/* * @Author: mbw * @Date: 2024-11-30 15:46:21 * @LastEditors: mbw && 1600520629@qq.com * @LastEditTime: 2025-05-29 10:03:26 * @FilePath: \ble_bjq_ch303rct6_ml307\bsp\src\bsp_ml307.c * @Description: * * Copyright (c) 2024 by ${git_name_email}, All Rights Reserved. */ #include #include "drv_gpio.h" #include "bsp_ml307.h" #include "user_sys.h" #include "bsp_flash.h" #include "stddef.h" #include "bsp_rtc.h" #include "bsp_bt.h" #include "bsp_mq.h" #include "user_sys.h" #include "bsp_rtc.h" #define LOG_TAG "ml307" #include #if IOT_MODULE_SWITCH == 1 #define ML307_THREAD_STACK_SIZE (4096 + 2048) #define ML307_RECV_THREAD_STACK_SIZE (4096 + 2048) #define ML307_LIFE_THREAD_STACK_SIZE (4096) #define ML307_THREAD_PRIORITY 25 #define ML307_THREAD_TICKS 50 #define ML307_RECV_THREAD_PRIORITY 24 #define ML307_RECV_THREAD_TICKS 10 #define ML307_LIFE_THREAD_PRIORITY 26 #define ML307_LIFE_THREAD_TICKS 10 // static rt_uint32_t ml307_status = 0; ALIGN (RT_ALIGN_SIZE) static char ml307_thread_stack[ML307_THREAD_STACK_SIZE]; static struct rt_thread ml307_thread; ALIGN (RT_ALIGN_SIZE) static char ml307_recv_thread_stack[ML307_RECV_THREAD_STACK_SIZE]; static struct rt_thread ml307_recv_thread; ALIGN (RT_ALIGN_SIZE) static char ml307_life_thread_stack[ML307_LIFE_THREAD_STACK_SIZE]; static struct rt_thread ml307_life_thread; struct rt_event at_device_event; rt_sem_t ml307_recv_sem; rt_sem_t ml307_recv_msg_sem; // 用于接收信号 rt_sem_t ml307_disconnect_sem; static rt_timer_t ml307_timer; // 上报心跳 static rt_timer_t ml307_upload_timer; // 更新本地时间定时器 static rt_timer_t ml307_error_timer; // 上电失败情况下启动定时器 rt_uint8_t ml307_power_down_flag; rt_uint8_t ml307_connect_sever_flag; rt_uint8_t ml307_send_error_flag; rt_uint8_t ml307_conncet_tcp_flag; rt_uint8_t ml307_disconnect_pdp_flag; // PDP断开连接标志 rt_uint8_t ml307_disconnect_retry_flag = 0; // 用于判断是否已经启动了重连,如果启动,不需要每次都进入 Ml307EventIndex ml307_event_index; Ml307Event ml307_current_evnet = kMl307PowerOnEvent; // 默认上电事件 Ml307Event ml307_latest_evnet = kMl307PowerOnEvent; // 最新传入的事件 rt_uint8_t power_on_send_flag = 0; rt_mutex_t ml307_mutex; extern valve_data valve[MAX_VALVE_NUM]; int BSP_Ml307_Init (struct Ml307_Ops *ops, rt_uint8_t version); int BSP_Ml307_Update (struct Ml307_Ops *ops, rt_uint8_t device_type, rt_uint8_t event_type); int Ml307_Send_Data (struct Ml307_Ops *ops, rt_uint8_t data_num, rt_uint8_t cmd, rt_uint8_t device_type, rt_uint8_t event_type); int Data_Resp (struct Ml307_Ops *ops, rt_uint8_t data_num, rt_uint8_t cmd, rt_uint8_t device_type, rt_uint8_t event_type, char *data, rt_uint8_t res); // int Ml307_Recv_Data(struct Ml307_Ops *ops, char *data); static struct DataBody body; static struct Ml307DataFrame frame; static struct Ml307RecvData ml307_recv; struct Ml307_Ops ml307_ops = { .body = &body, .frame = &frame, .recv = &ml307_recv, .init = BSP_Ml307_Init, .update_data = BSP_Ml307_Update, .send = Ml307_Send_Data, .Resp = Data_Resp, // .Recv = Ml307_Recv_Data,//,没用到 }; static struct at_device_ml307 _dev = { ML307_SAMPLE_DEIVCE_NAME, ML307_SAMPLE_CLIENT_NAME, ML307_ENABLE_3_8_V, ML307_PWR_PIN, ML307_RST_PIN, ML307_USIM_DECT_PIN, ML307_SAMPLE_RECV_BUFF_LEN, }; static rt_uint32_t ml307_event_flags[kMl307MaxEventcnt] = {0}; static rt_bool_t ml307_event_initialized = RT_FALSE; // 是否初始化完成 typedef enum { kMl307PriorityLowest, // 4、优先级最低(定时心跳、浓度异常、报警触发、报警解除、传感器故障触发 传感器故障解除) kMl307PriorityMedium, // 2、优先级第三高 自检触发 kMl307PriorityHigh, // 1、优先级第二高 掉电 kMl307PriorityHighest, // 0 优先级最高(设备上电时的定时心跳) } Ml307Priority; typedef struct { Ml307Event event_flag; Ml307Priority priority; const char *event_name; int (*send_func) (struct at_device *device, void *param); } Ml307EventInfo; static void Ml307_Set_Event (Ml307Event event_type) { if (event_type < kMl307MaxEventcnt) { ml307_event_flags[event_type] = (1 << event_type); } } void Ml307_Event_Init (void) { rt_err_t ret = rt_event_init (&at_device_event, "ml307_event", RT_IPC_FLAG_PRIO); if (ret == RT_EOK) { ml307_event_initialized = RT_TRUE; for (Ml307Event event = kMl307HeartbeatEvent; event < kMl307MaxEventcnt; event++) { Ml307_Set_Event (event); } } else { LOG_E ("ml307_event init failed!"); } } rt_uint32_t Ml307_Get_Event_Flag (Ml307Event event_type) { if (event_type < kMl307MaxEventcnt) { return ml307_event_flags[event_type]; } return 0; } void Ml307_Send_Event (Ml307Event event_type) { ml307_event_index.last_event = ml307_event_index.current_event; ml307_event_index.current_event = event_type; ml307_latest_evnet = event_type; if (ml307_event_initialized == RT_TRUE) { if ((ml307_event_index.current_event != kMl307PowerOnEvent) && (ml307_event_index.current_event != kMl307PowerDownEvent)) { if (power_on_send_flag) { rt_event_send (&at_device_event, Ml307_Get_Event_Flag (event_type)); } } else { rt_event_send (&at_device_event, Ml307_Get_Event_Flag (event_type)); } } else { LOG_E ("ml307_event_initialized is false"); } } // 定义定时器回调函数 static void Ml307_Ht_Timer_Cb (void *parameter) { Ml307_Send_Event (kMl307HeartbeatEvent); } static void Ml307_Error_Timer_Cb (void *parameter) { if (power_on_send_flag) // 上电成功时,停止定时器 { rt_timer_stop (ml307_error_timer); } else { Ml307_Send_Event (kMl307PowerOnEvent); } } int _Pack_Send (struct Ml307_Ops *ops, char *buf) { char ml307_send_buf[1024] = {0}; // 发送缓冲区,用于存储最终发送的数据 // char byteArr1[512]; // 转换成字节值 unsigned short crc16 = 0; // 存储CRC16校验和 struct at_device *device = at_device_get_by_name (AT_DEVICE_NAMETYPE_NETDEV, ML307_SAMPLE_DEIVCE_NAME); ASSERT (device); crc16 = crc1021 (buf, rt_strlen (buf)); LOG_D ("buf: %s", buf); LOG_D ("crc16: %X", crc16); // 将数据、校验和及尾部标识添加到发送缓冲区中 if (rt_snprintf (ml307_send_buf, sizeof (ml307_send_buf), "%s%04X%02X%02X%02X", buf, crc16, ops->frame->tail[0], ops->frame->tail[1], ops->frame->tail[2]) >= sizeof (ml307_send_buf)) { // 发生缓冲区溢出 LOG_E ("Buffer overflow in ml307_send_buf"); return -RT_ERROR; } // 打印调试信息 // LOG_D("ml307_send_buf: %s", ml307_send_buf); rt_uint16_t data_len = rt_strlen (ml307_send_buf); // 通过AT指令发送数据给ML307模块 if (at_send_data (device, ml307_send_buf, data_len / 2) != RT_EOK) { return -RT_ERROR; } return RT_EOK; } /** * @brief 发送数据到ml307模块 * * 本函数根据提供的数据和参数构建一个格式化字符串,计算其CRC16校验和, * 然后将该字符串发送给ML307模块 *@param version 协议版本 * @param data 要发送的十六进制数据字符串 * @param len 数据字符串的十六进制数据格式长度 * @param data_num 数据编号 * @param cmd_num 命令编号 * @return int 返回0表示成功,非零表示失败 */ static int _Send_Handle (struct Ml307_Ops *ops, rt_size_t data_num, rt_size_t cmd_num, const char *data) { // 临时缓冲区,用于格式化数据 char data_buf[1024] = {0}; rt_size_t data_len = rt_strlen (data); // 格式化数据,构建发送给ML307模块的数据包 rt_int32_t len = rt_snprintf (data_buf, sizeof (data_buf), "%02X%02X%02X%02X%04X%04X%02X%04X%s", ops->frame->header[0], ops->frame->header[1], ops->frame->header[2], ops->frame->version, // 协议版本 ops->frame->manufacture, // 制造商ID data_num, cmd_num, data_len / 2, data); if (len < 0 || len >= sizeof (data_buf)) { LOG_E ("Send Data buffer overflow"); return -RT_ERROR; } // LOG_D("data_buf: %s", data_buf); return _Pack_Send (ops, data_buf); } // 初始化函数 int BSP_Ml307_Init (struct Ml307_Ops *ops, rt_uint8_t version) { if (ops->frame == RT_NULL) { LOG_E ("Memory allocation failed"); return -RT_ENOMEM; } rt_memset (ops->frame, 0, sizeof (struct Ml307DataFrame)); ops->frame->header[0] = 0x4A; ops->frame->header[1] = 0x54; ops->frame->header[2] = 0x30; ops->frame->version = version; ops->frame->manufacture = DEVICE_MANUFACTURE; ops->frame->tail[0] = 0x42; ops->frame->tail[1] = 0x4A; ops->frame->tail[2] = 0x51; return RT_EOK; } int _Update_Valve_Data (struct Ml307_Ops *ops) { ops->body->valve_num = Flash_Get_Valve_Num(); if (ops->body->valve_num == 0) // 确保至少有一个阀门数据体 { LOG_D ("No valve data"); rt_memset (&ops->body->valve_data, 0, sizeof (struct valve_t)); // 直接全部发送0 } else { LOG_D ("valve_num: %d", ops->body->valve_num); rt_memcpy (&ops->body->valve_data[0], &valve[0], sizeof (struct valve_t)); // rt_memset(&valve[0].valve_connct_status, 0, (sizeof(struct valve_t) - 7)); // 清空阀门包数据,等待下次更新,如果没更新说明断开了 } return RT_EOK; } // 更新函数 int BSP_Ml307_Update (struct Ml307_Ops *ops, rt_uint8_t device_type, rt_uint8_t event_type) { ops->body->device_type = device_type; ops->body->event_type = event_type; ops->body->hw = (rt_uint8_t)Flash_Get_SysCfg (kHwVerId); ops->body->sw = (rt_uint8_t)Flash_Get_SysCfg (kSwVerId); rt_memcpy (ops->body->imei, &ml307, sizeof (ml307_sys_info)); // 直接赋值结构体数据 ops->body->gas_voltage = Get_Gas_VoltageAdcInt1000x(); ops->body->product_work_temperature = 0x32; ops->body->work_duration = work_duration; ops->body->device_status = device_state_flag; ops->body->valve_num = Flash_Get_Valve_Num(); _Update_Valve_Data (ops); return RT_EOK; } int Ml307_Send_Data (struct Ml307_Ops *ops, rt_uint8_t data_num, rt_uint8_t cmd, rt_uint8_t device_type, rt_uint8_t event_type) { rt_size_t lenght = 0; int ret = 0; char data_buf[1024] = {0}; char temp[3]; // 临时缓冲区,用于存储每个字节的十六进制表示 if (ops == NULL || ops->body == NULL) { // 处理 ops 或 ops->body 为 NULL 的情况 return RT_ERROR; // 或者抛出异常,返回错误码等 } if (sizeof (struct DataBody) == 0) { data_buf[0] = '\0'; // 确保 data_buf 被正确初始化 return RT_ERROR; } rt_memset (ops->body, 0, sizeof (struct DataBody)); rt_mutex_take (ml307_mutex, RT_WAITING_FOREVER); ret = ops->update_data (ops, device_type, event_type); if (ret == RT_EOK) { if (ops->body->valve_num == 0) { lenght = (sizeof (struct DataBody) - (MAX_VALVE_NUM - 1) * sizeof (struct valve_t)); // 至少要发送一个阀门数据体 } else { lenght = (sizeof (struct DataBody) - (MAX_VALVE_NUM - ops->body->valve_num) * sizeof (struct valve_t)); // 至少要发送一个阀门数据体 } for (int i = 0; i < lenght; i++) { rt_snprintf (temp, sizeof (temp), "%02X", ((rt_uint8_t *)ops->body)[i]); rt_memcpy (data_buf + i * 2, temp, 2); } ret = _Send_Handle (ops, data_num, cmd, data_buf); if (ret != RT_EOK) { ret = -ret; } } rt_mutex_release (ml307_mutex); return ret; } int Data_Resp (struct Ml307_Ops *ops, rt_uint8_t data_num, rt_uint8_t cmd, rt_uint8_t device_type, rt_uint8_t event_type, char *data, rt_uint8_t res) { if (ml307_conncet_tcp_flag != 1) { LOG_E ("ml307_conncet_tcp_flag error"); return -RT_ERROR; } char data_buf[512] = {0}; rt_int32_t len = rt_snprintf (data_buf, sizeof (data_buf), "%02X%02X%30s%02X", device_type, event_type, data, res); if (len < 0 || len >= sizeof (data_buf)) { LOG_E ("Resp Data buffer overflow"); return -RT_ERROR; } // LOG_D("data_buf: %s", data_buf); return _Send_Handle (ops, data_num, cmd, data_buf); } #if 0 int Ml307_Recv_Data(struct Ml307_Ops *ops, char *data) { // ops->body = (struct DataBody *)rt_malloc(sizeof(struct DataBody)); // rt_memset(ops->body, 0, sizeof(struct DataBody)); // rt_free(ops->body); return RT_EOK; } #endif /***************************************发送处理函数************************************************ */ /** * 处理定时心跳事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Heartbeat (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; int ret = 0; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } ret = ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_DATA_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_HEARTBEAT); if (ret != RT_EOK) { LOG_E ("ml307 send data failed\n"); return ret; } return RT_EOK; } /** * 处理时间校准事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Time_Calibration (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_TIME_CALIBRATION, DEVICE_TYPE_ML307, EVENT_TYPE_TIME_CALIBRATION)) { LOG_E ("ml307 send cmd[%X] failed\n", CMD_TYPE_TIME_CALIBRATION); return -RT_ERROR; } return RT_EOK; } /** * 处理报警事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Alarm (struct at_device *device, void *param) { rt_err_t ret = RT_EOK; struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_ALARM)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_ALARM); return -RT_ERROR; } return RT_EOK; } /** * 处理报警恢复事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Alarm_Recover (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_ALARM_RECOVER)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_ALARM_RECOVER); return -RT_ERROR; } return RT_EOK; } /** * 处理故障事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Fault (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_FAULT)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_FAULT); return -RT_ERROR; } return RT_EOK; } /** * 处理故障恢复事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Fault_Recover (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_FAULT_RECOVER)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_FAULT_RECOVER); return -RT_ERROR; } return RT_EOK; } /** * 处理自检事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Self_Check (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_SELF_CHECK)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_SELF_CHECK); return -RT_ERROR; } return RT_EOK; } /** * 处理消音事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Silence (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_SILENCE)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_SILENCE); return -RT_ERROR; } return RT_EOK; } /** * 处理异常事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Exception (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_EXCEPTION)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_EXCEPTION); return -RT_ERROR; } return RT_EOK; } /** * 处理电磁阀状态改变事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Valve_Status (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_VALVE_STATUS)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_VALVE_STATUS); return -RT_ERROR; } return RT_EOK; } /** * 处理风扇状态改变事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Fan_Status (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_FAN_STATUS)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_FAN_STATUS); return -RT_ERROR; } return RT_EOK; } /** * 处理温度异常事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Temp_Anomaly (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_TEMP_ANOMALY)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_TEMP_ANOMALY); return -RT_ERROR; } return RT_EOK; } /** * 处理上电事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Power_On (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_POWER_ON)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_POWER_ON); return -RT_ERROR; } return RT_EOK; } /** * 处理断电事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Power_Off (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } rt_memset (&valve[0].valve_connct_status, 0, (sizeof (struct valve_t) - 7)); // 当掉电事件时,直接清空阀门结构体,这样连接状态就为断开 if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_POWER_OFF)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_POWER_OFF); return -RT_ERROR; } return RT_EOK; } /** * 处理阀门连接事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Valve_Connect (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_VALVE_CONNECT)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_VALVE_CONNECT); return -RT_ERROR; } return RT_EOK; } /** * 处理阀门断开事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Valve_Disconnect (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_VALVE_DISCONNECT)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_VALVE_DISCONNECT); return -RT_ERROR; } return RT_EOK; } /** * 处理设备故障事件 * @param device 设备结构体指针 * @param param 操作结构体指针 * @return 操作结果 */ int Ml307_Send_Device_Failure (struct at_device *device, void *param) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; if ((device == RT_NULL) || (ml307_ops == RT_NULL)) { LOG_E ("ml307 param error\n"); return RT_ERROR; } rt_err_t ret = RT_EOK; ret = device->class->device_ops->control (device, AT_DEVICE_CTRL_GET_SIGNAL, RT_NULL); if (ret != RT_EOK) { LOG_E ("ml307 get signal failed\n"); return -RT_ERROR; } if (ml307_ops->send (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_DEVICE_EVENT_REPORT, DEVICE_TYPE_ML307, EVENT_TYPE_DEVICE_FAILURE)) { LOG_E ("ml307 send cmd[%X] failed\n", EVENT_TYPE_DEVICE_FAILURE); return -RT_ERROR; } return RT_EOK; } /*这个【4、优先级最低当同时触发后,相同服务直接合并】暂时还没想好怎么做, 思路感觉就是得重新开一个线程,然后再开一个任务队列,将所有的事件,发送到任务队列 在线程中,对任务队列进行查看并处理,看目前都有哪些事件,是处于那个优先级得,如果是最低优先级,就只发送一帧数据就行了, 如果是不同优先级,按照优先级顺序发送事件,但感觉这样会使得程序更复杂,本来发送就很快,感觉没必要这样搞*/ const Ml307EventInfo ml307_event_info[] = { {kMl307PowerOnEvent, kMl307PriorityHighest, "上电心跳事件", Ml307_Send_Power_On }, {kMl307PowerDownEvent, kMl307PriorityHigh, "掉电事件", Ml307_Send_Power_Off }, {kMl307ValveConnectEvent, kMl307PriorityMedium, "阀门连接事件", Ml307_Send_Valve_Connect }, {KMl307ValveDisconnectEvent, kMl307PriorityMedium, "阀门断开事件", Ml307_Send_Valve_Disconnect}, {kMl307SelfCheckEvent, kMl307PriorityMedium, "自检事件", Ml307_Send_Self_Check }, {kMl307HeartbeatEvent, kMl307PriorityLowest, "定时心跳事件", Ml307_Send_Heartbeat }, {kMl307TempAnomalyEvent, kMl307PriorityLowest, "温度异常事件", Ml307_Send_Temp_Anomaly }, {kMl307AlarmEvent, kMl307PriorityLowest, "报警触发事件", Ml307_Send_Alarm }, {kMl307AlarmRcyEvent, kMl307PriorityLowest, "报警解除事件", Ml307_Send_Alarm_Recover }, {kMl307FaultEvent, kMl307PriorityLowest, "传感器故障事件", Ml307_Send_Fault }, {kMl307FaultRcyEvent, kMl307PriorityLowest, "传感器故障解除事件", Ml307_Send_Fault_Recover }, {kMl307TimeCalibrationEvent, kMl307PriorityLowest, "时间校准事件", Ml307_Send_Time_Calibration}, {kMl307SilenceEvent, kMl307PriorityLowest, "消音事件", Ml307_Send_Silence }, // {kMl307ExceptionEvent, kMl307PriorityLowest, "异常事件", Ml307_Send_Exception}, {kMl307ValveStatusEvent, kMl307PriorityLowest, "电磁阀状态改变事件", Ml307_Send_Valve_Status }, {kMl307FanStatusEvent, kMl307PriorityLowest, "风机状态改变事件", Ml307_Send_Fan_Status }, {kMl307DeviceFailureEvent, kMl307PriorityLowest, "设备失效事件", Ml307_Send_Device_Failure } }; Ml307Priority Get_Event_Priority (Ml307Event event_type) { for (size_t i = 0; i < sizeof (ml307_event_info) / sizeof (ml307_event_info[0]); i++) { if (ml307_event_info[i].event_flag == event_type) { return ml307_event_info[i].priority; } } return kMl307PriorityLowest; } /** * 处理ML307设备的事件 * @param ml307_recv_event 接收到的ML307事件标志 * @return */ int Ml307_Process_Events (Ml307Event ml307_recv_event, struct at_device *device, void *param) { rt_uint8_t cnt = 0; rt_err_t ret = RT_EOK; rt_uint8_t max_retry_count = (rt_uint8_t)Flash_Get_SysCfg (kIotRetryId); struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)param; const Ml307EventInfo *event = RT_NULL; for (size_t i = 0; i < sizeof (ml307_event_info) / sizeof (Ml307EventInfo); ++i) { // 检查当前事件是否在接收到的事件标志中 if (ml307_recv_event == ml307_event_info[i].event_flag) { event = &ml307_event_info[i]; break; } } if (event) // 处理该事件 { // 打印事件的名称 ml307_current_evnet = event->event_flag; for (size_t i = 0; i < max_retry_count; i++) { if (ml307_conncet_tcp_flag) { if (event->send_func) { #ifdef TEST_ENABLE RTC_ShowTime(); // 每次发送打印下时间,容易定位问题 #endif LOG_D ("%s上报, cnt :%d", event->event_name, cnt); int result = event->send_func (device, ml307_ops); if (result != RT_EOK) { LOG_E ("ml307 send failed\n"); ret = RT_ERROR; continue; } else { if (rt_sem_take (ml307_recv_msg_sem, 8000) == RT_EOK) { LOG_D ("收到回复\n"); ml307_connect_sever_flag = 1; ret = RT_EOK; // 函数执行完毕,返回0 break; } else { // 收不到说明在平台未注册或者信号不行,此时ml307_connect_sever_flag 为0,但ml307_conncet_tcp_flag = 1;此时不发起重连,等待事件触发就行 ret = RT_ERROR; rt_thread_mdelay (IMEI_Delay()); } } } } else { ret = RT_ERROR; } if (event->priority < Get_Event_Priority (ml307_latest_evnet)) // 查看当前事件和新传入的事件的优先级哪个高,如果有高的直接退出处理高优先级的 { LOG_W ("有更高优先级的事件进入,退出当前处理\n"); ret = RT_EOK; break; } } } if (rt_strcmp (event->event_name, "掉电事件") == RT_EOK) { LOG_D ("掉电处理TCP"); if (device->class->device_ops->control (device, AT_DEVICE_CTRL_NET_DISCONN, RT_NULL) == RT_EOK) { LOG_D ("关闭TCP"); } rt_pin_write (_dev.pwr_en_pin, PIN_LOW); // 断开3_8v供电 LOG_D ("关闭模组"); ml307_power_down_flag = 1; ret = RT_EOK; } else { if (ret != RT_EOK) { ml307_connect_sever_flag = 0; if (!ml307_disconnect_retry_flag) { LOG_D("与服务器断开,重连网络中"); rt_sem_release (ml307_disconnect_sem); } else { LOG_D ("与服务区断开连接,等待连接中......\n"); } } } return ret; } // 比较帧头和帧尾 int Compare_HeaderToTail (struct Ml307_Ops *ops) { // 比较帧头 for (int i = 0; i < 3; i++) { if (ops->frame->header[i] != ops->recv->header[i]) { LOG_E ("ops->frame->header[%x] != ops->recv->header[%x]\n", ops->frame->header[i], ops->recv->header[i]); return -1; } } // 比较帧尾 for (int i = 0; i < 3; i++) { if (ops->frame->tail[i] != ops->recv->tail[i]) { LOG_E ("ops->frame->tail[%x] != ops->recv->tail[%x]\n", ops->frame->tail[i], ops->recv->tail[i]); return -2; } } if (ops->recv->recv_data.res_num != RESPONSE_CODE_SUCCESS) // 判断是否为成功响应 { LOG_E ("ops->recv->recv_data.res_num[%x] != RESPONSE_CODE_SUCCESS\n", ops->recv->recv_data.res_num); return -3; } return RT_EOK; } void Handle_Server_Reply (struct Ml307_Ops *ops) { if ((ops->recv->recv_data.event_type >= EVENT_TYPE_HEARTBEAT) && (ops->recv->recv_data.event_type <= INSTRUCTION_DOWN_VALVE_REMOVE)) { LOG_D ("服务器响应成功,响应码:[%02X]\n", ops->recv->recv_data.event_type); rt_sem_release (ml307_recv_msg_sem); } else { LOG_E ("服务器响应失败,响应码:[%02X]\n", ops->recv->recv_data.event_type); } } void Handle_Self_Check (struct Ml307_Ops *ops) { LOG_D ("服务器下发自检指令\n"); char imei[16] = {0}; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); LOG_D ("imei:%s\n", imei); _Self_Check_Mode(); rt_thread_mdelay (100); char temp[32] = "0"; String2Hex (temp, imei); // 将字符串转为十六进制字符串 LOG_D ("temp: %s", temp); Send_Laser_Alarm_Event (kSelfCheckEvent); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_SELF_CHECK, temp, RESPONSE_CODE_SUCCESS); Send_Laser_Alarm_Event (kNormalDetectionEvents); // 先返回正常状态,然后跳转到所处的状态 } void Handle_Mute (struct Ml307_Ops *ops) { LOG_D ("服务器下发消音指令\n"); char imei[16] = {0}; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); char temp[32] = "0"; String2Hex (temp, imei); // 将字符串转为十六进制字符串 Send_Laser_Alarm_Event (KMuteEvent); rt_thread_mdelay (100); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_MUTE, temp, RESPONSE_CODE_SUCCESS); } /*关阀 52-阀门编号(1byte)+ MAC地址(6byte)+ 补零字节 = 15byte 如果内容全部为0,则默认为关闭有线阀门*/ rt_err_t Handle_Close_Valve (struct Ml307_Ops *ops) { LOG_D ("服务器下发关闭阀门指令\n"); int i = 0; rt_uint8_t data[FLASH_VALVE_MAC_ADDR_LEN + 1] = {0}; rt_uint8_t mac_addr[6] = {0}; char imei[16] = {0}; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); char temp[32] = "0"; String2Hex (temp, imei); // 将字符串转为十六进制字符串 rt_memcpy (data, (ops->recv->recv_data.res_data + 8), FLASH_VALVE_MAC_ADDR_LEN + 1); LOG_D ("data[0] = %x data[1] = %x data[2] = %x data[3] = %x data[4] = %x, data[5] = %x data[6] = %x", data[0], data[1], data[2], data[3], data[4], data[5], data[6]); if ((data[0] > 0) && (data[0] < MAX_VALVE_NUM)) // 不为零则说明关闭无线阀门 { rt_uint8_t cnt = Flash_Get_Valve_Num(); if (cnt == 0) { LOG_E ("没有设置无线阀门\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { LOG_D ("无线阀门编号:%d\n", data[0]); if (Flash_Get_Mac_Addr (mac_addr, data[0]) != RT_EOK) { LOG_E ("获取无线阀门mac地址失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } LOG_D ("mac_addr[0] = %x mac_addr[1] = %x mac_addr[2] = %x mac_addr[3] = %x mac_addr[4] = %x, mac_addr[5] = %x", mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); /*对两个数组进行比较,如果值不同则退出*/ for (; i < FLASH_VALVE_MAC_ADDR_LEN; i++) { if (mac_addr[i] != data[i + 1]) { LOG_E ("mac_addr[%d][%x]!= data[%d][%x]\n", i, mac_addr[i], i + 1, data[i + 1]); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } } if (i == FLASH_VALVE_MAC_ADDR_LEN) { LOG_D ("mac地址匹配成功,执行关阀动作\n"); if (Bt_Valve_Handler (kValveCmdCtr, data[0], &data[1]) != RT_EOK) { LOG_E ("关阀失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } if (rt_sem_take (&bt_ctr_sem, 10000) != RT_EOK) // 等待十秒获取信号量 { LOG_E ("获取信号量失败\n"); rt_sem_control (&bt_ctr_sem, RT_IPC_CMD_RESET, 0); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { LOG_D ("关阀成功\n"); rt_sem_control (&bt_ctr_sem, RT_IPC_CMD_RESET, 0); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_SUCCESS); return RT_EOK; } } else { LOG_E ("mac地址匹配失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_ACTION_FAILURE); } } } else { LOG_D ("关闭有线阀门\n"); // TODO:此处需要增加关阀有线阀门的逻辑 ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_VALVE, temp, RESPONSE_CODE_SUCCESS); return RT_EOK; } } void Handle_Open_Valve (struct Ml307_Ops *ops) { LOG_D ("服务器下发打开阀门指令\n"); char imei[16] = {0}; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); char temp[32] = "0"; String2Hex (temp, imei); // 将字符串转为十六进制字符串 // // rt_uint8_t ret = BSP_Set_Emv_Status(1); // emv_state_flag = 1; // 电磁阀动作 // rt_thread_mdelay(20); // emv_state_flag = 0; ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_OPEN_VALVE, temp, RESPONSE_CODE_SUCCESS); } void Handle_Open_Relay (struct Ml307_Ops *ops) { LOG_D ("服务器下发打开继电器指令\n"); char imei[16] = {0}; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); char temp[32] = "0"; String2Hex (temp, imei); // 将字符串转为十六进制字符串 // relay_state_flag = 1; rt_thread_mdelay (10); // rt_uint8_t ret = BSP_Set_Relay_Status(0); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_OPEN_RELAY, temp, RESPONSE_CODE_SUCCESS); } void Handle_Close_Relay (struct Ml307_Ops *ops) { LOG_D ("服务器下发关闭继电器指令\n"); char imei[16] = {0}; char temp[32] = "0"; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 // relay_state_flag = 0; rt_thread_mdelay (100); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CLOSE_RELAY, temp, RESPONSE_CODE_SUCCESS); } void Handle_Query_Params (struct Ml307_Ops *ops) { rt_uint8_t data[10] = {0}; char str[64] = {0}; LOG_D ("服务器下发查询系统参数\n"); rt_memcpy (data, (rt_uint8_t *)FLASH_HW_VER_ADDR, sizeof (sys_config_info) - 50); LOG_D ("hw_ver:%02x sw_ver:%02x alarm_low:%02x alarm_high:%02x temp_alarm:%02x iot_upload_cycle:%dmin retry:%02x emagnetic:%02X relay_switch:%02X\n", data[0], data[1], data[2], data[3], data[4], ((data[5]) | (data[6] << 8)), data[7], data[8], data[9]); rt_sprintf (str, "0000000000%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X", data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9]); rt_thread_mdelay (100); // 释放下线程 ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_QUERY_PARAMS, str, RESPONSE_CODE_SUCCESS); } int Handle_Config_Params (struct Ml307_Ops *ops) { char data_buf[32] = {0}; rt_uint8_t recv_data[16] = {0}; rt_uint8_t flash_info[16] = {0}; char imei[16] = {0}; char temp[32] = "0"; LOG_D ("服务器下发配置参数\n"); Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 rt_memset (data_buf, '0', 32); rt_memcpy (recv_data, (ops->recv->recv_data.res_data + 5), sizeof (sys_config_info) - 50); rt_memcpy (flash_info, (rt_uint8_t *)FLASH_HW_VER_ADDR, sizeof (sys_config_info) - 50); LOG_D ("hw_ver:%02x sw_ver:%02x alarm_low:%02x alarm_high:%02x temp_alarm:%02x iot_upload_cycle:%d min retry:%02x emagnetic:%02X relay_switch:%02X\n", flash_info[0], flash_info[1], flash_info[2], flash_info[3], flash_info[4], (flash_info[5] | (flash_info[6] << 8)), flash_info[7], flash_info[8], recv_data[9]); LOG_D ("recv_data: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x \n", recv_data[0], recv_data[1], recv_data[2], recv_data[3], recv_data[4], recv_data[5], recv_data[6], recv_data[7], recv_data[8], recv_data[9], recv_data[10], recv_data[11], recv_data[12], recv_data[13], recv_data[14], recv_data[15]); LOG_D ("data:%s\n", data_buf); for (rt_uint8_t i = 0; i < (sizeof (sys_config_info) - 50); i++) { LOG_D ("recv_data[%d] = %d", i, recv_data[i]); if (recv_data[i] != flash_info[i]) { if ((recv_data[2] > 25) || (recv_data[2] < 5)) /*家报的报警设定值应在5%~25%之间*/ { if (ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CONFIG_PARAMS, temp, RESPONSE_CODE_ACTION_FAILURE) == RT_EOK) { LOG_W ("recv_data[3] :%d", recv_data[3]); LOG_W ("配置参数超出范围,请核实后重试\n"); } return RT_EOK; } else // 如果没有超出,再写入信息 { if (BSP_Flash_Write_Info (recv_data, sizeof (sys_config_info) - 50) != 0) { rt_uint16_t iot_upload_time = (uint16_t)Flash_Get_SysCfg (kIotUploadCycleId); unsigned long timeout = iot_upload_time * 60 * RT_TICK_PER_SECOND; rt_timer_control (ml307_timer, RT_TIMER_CTRL_SET_TIME, (void *)&timeout); // 更新上报周期 LOG_D ("上报周期由%dmin更新为%dmin", ((flash_info[5] << 8) | flash_info[6]), iot_upload_time); if (ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CONFIG_PARAMS, temp, RESPONSE_CODE_SUCCESS) == RT_EOK) { LOG_D ("配置参数写入成功\n"); } return RT_EOK; } else { LOG_D ("配置参数写入失败\n"); if (ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CONFIG_PARAMS, temp, RESPONSE_CODE_ACTION_FAILURE) == RT_EOK) { LOG_D ("写入失败响应成功\n"); } return RT_ERROR; } } } } if (ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_CONFIG_PARAMS, temp, RESPONSE_CODE_SUCCESS) == RT_EOK) { LOG_D ("配置参数没有变化\n"); } return RT_EOK; } void Handle_Time_Calibration_Data (struct Ml307_Ops *ops) { rt_uint8_t data[10] = {0}; TsRtcDateTime rtc_dt; char imei[16] = {0}; char temp[32] = "0"; LOG_D ("时间校准数据\n"); Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 rt_memcpy (data, ops->recv->recv_data.res_data, sizeof (data)); // 提取后4个字节作为时间戳 time_t timestamp = (data[6] << 24) | (data[7] << 16) | (data[8] << 8) | data[9]; Timestamp_To_Rtc_DateTime (timestamp, &rtc_dt); // 打印结果 LOG_I ("时间: %04d-%02d-%02d %02d:%02d:%02d (星期%d)\n", rtc_dt.year, rtc_dt.month, rtc_dt.day, rtc_dt.hour, rtc_dt.minute, rtc_dt.second, rtc_dt.week); RTC_SetTime (rtc_dt.year, rtc_dt.month, rtc_dt.day, rtc_dt.hour, rtc_dt.minute, 0); /* Setup Time */ rt_thread_mdelay (100); // 释放下线程 ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_TIME_CALIBRATION, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_TIME_CALIBRATION, temp, RESPONSE_CODE_SUCCESS); } // 下发修改服务器地址指令 void Handle_Sever_Addr_Set (struct Ml307_Ops *ops) { flash_sever_info sever_info = {0}; rt_uint8_t data[6] = {0}; char imei[16] = {0}; char temp[32] = "0"; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 rt_memcpy (data, (ops->recv->recv_data.res_data + 9), FLASH_SERVER_LEN); LOG_D ("data[%d] = %x data[%d] = %x data[%d] = %x data[%d] = %x data[%d] = %x data[%d] = %x", 0, data[0], 1, data[1], 2, data[2], 3, data[3], 4, data[4], 5, data[5]); Flash_Set_Sever_Data (data); if (Flash_Get_Sever_Data (&sever_info) == RESET) { LOG_E ("服务器地址修改失败\n"); } else { LOG_D ("服务器地址修改成功\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_SEVER_ADDR, temp, RESPONSE_CODE_SUCCESS); } } /*新增阀门设备*/ rt_err_t Handle_Valve_Add (struct Ml307_Ops *ops) { LOG_D ("服务器下发注册阀门指令\n"); rt_uint8_t data[7] = {0}; char imei[16] = {0}; char temp[32] = "0"; rt_uint8_t cnt = Flash_Get_Valve_Num(); Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 if (cnt >= 1) { LOG_E ("阀门设备数量超过最大值\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } // 无阀门数据时添加,有阀门数据时不添加 if (cnt >= 0 && cnt < MAX_VALVE_NUM) { rt_memcpy (data, (ops->recv->recv_data.res_data + 8), FLASH_VALVE_MAC_ADDR_LEN + 1); if (data[0] > 1) { LOG_E ("阀门设备数量超过最大值[1]\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_OTHER_ERROR); return RT_ERROR; } LOG_D ("data[0] = %x data[1] = %x data[2] = %x data[3] = %x data[4] = %x, data[5] = %x data[6] = %x", data[0], data[1], data[2], data[3], data[4], data[5], data[6]); valve[data[0] - 1].valve_id = data[0]; // 更新阀门ID rt_memcpy (valve[data[0] - 1].valve_mac, &data[1], FLASH_VALVE_MAC_ADDR_LEN); // 更新MAC地址 if (Bt_Valve_Handler (kValveCmdReg, data[0], &data[1]) != RT_EOK) // 更新蓝牙端mac地址 { LOG_E ("新增阀门设备失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } if (rt_sem_take (&bt_reg_sem, 10000) != RT_EOK) // 等待十秒获取信号量 { LOG_E ("获取信号量失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { if (Flash_Set_Mac_Addr (&data[1], data[0]) == RESET) { LOG_E ("阀门设备写入FLash失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } LOG_D ("新增阀门设备成功\n"); Flash_Set_Valve_Num (cnt + 1); if (ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_SUCCESS) != RT_EOK) { LOG_D ("发送失败,清空本地mac地址"); rt_uint8_t mac_addr[6] = {0}; // 清空本地阀门信息 if (Flash_Set_Mac_Addr (mac_addr, 1) != RESET) { LOG_E ("本地阀门信息清空完成"); Flash_Set_Valve_Num (0); } Bt_Valve_Handler (kValveCmdRemAll, RT_NULL, RT_NULL); if (rt_sem_take (&bt_rem_sem, 10000) == RT_EOK) // 如果没刷掉数据,则黄灯会亮一秒,如果刷成功了,则红灯闪一下黄灯不会亮 { return RT_EOK; } } } return RT_EOK; } } /*更换阀门设备*/ rt_err_t Handle_Valve_Replace (struct Ml307_Ops *ops) { size_t i = 0; rt_uint8_t data[13] = {0}; rt_uint8_t mac_addr[FLASH_VALVE_MAC_ADDR_LEN] = {0}; char imei[16] = {0}; char temp[32] = "0"; LOG_I ("服务器下发更换阀门设备"); Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 rt_memcpy (data, (ops->recv->recv_data.res_data + 2), (2 * FLASH_VALVE_MAC_ADDR_LEN + 1)); LOG_HEX ("data", 16, data, sizeof (data)); /*设备编号(1byte)+ 新MAC地址(6)+ 旧阀门MAC地址(6) + 补零字节= 15byte*/ if (Flash_Get_Mac_Addr (mac_addr, data[0]) == RT_EOK) { for (; i < FLASH_VALVE_MAC_ADDR_LEN; i++) { if (mac_addr[i] != data[i + 7]) { LOG_E ("旧阀门地址错误\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_OTHER_ERROR); return RT_ERROR; } } LOG_D ("data[0] = %x data[1] = %x data[2] = %x data[3] = %x data[4] = %x, data[5] = %x data[6] = %x data[7] = %x data[8] = %x data[9] = %x data[10] = %x data[11] = %x data[12] = %x", data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10], data[11], data[12]); if (i == FLASH_VALVE_MAC_ADDR_LEN) { if (Bt_Valve_Handler (kValveCmdRep, data[0], &data[1]) != RT_EOK) { LOG_E ("更换阀门设备失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } if (rt_sem_take (&bt_rep_sem, 10000) != RT_EOK) // 等待十秒获取信号量 { LOG_E ("获取更换阀门信号量失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_ADD, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { if (Flash_Set_Mac_Addr (&data[1], data[0]) == RESET) { LOG_E ("更换阀门设备失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } LOG_D ("更换阀门设备成功\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_SUCCESS); return RT_EOK; } } else { LOG_E ("旧阀门MAC地址错误\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_OTHER_ERROR); return RT_ERROR; } } else { LOG_E ("该阀门设备错误\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REPLACE, temp, RESPONSE_CODE_PARSE_FAIL); } return RT_EOK; } /*移除阀门设备*/ rt_err_t Handle_Remove_Valve (struct Ml307_Ops *ops) { rt_uint8_t data[8] = {0}; char imei[16] = {0}; char temp[32] = "0"; rt_uint8_t cnt = Flash_Get_Valve_Num(); Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 LOG_I ("接收到服务器下发移除阀门指令"); #if 1 if (cnt == 0) { LOG_W ("阀门设备数量为0\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REMOVE, temp, RESPONSE_CODE_SUCCESS); // 如果本地无阀门信息,直接返回成功 return RT_EOK; } rt_memcpy (data, (ops->recv->recv_data.res_data + 8), FLASH_VALVE_MAC_ADDR_LEN + 1); LOG_D ("data[0] = %x data[1] = %x data[2] = %x data[3] = %x data[4] = %x, data[5] = %x", data[0], data[1], data[2], data[3], data[4], data[5], data[6]); if (Bt_Valve_Handler (kValveCmdRem, data[0], &data[1]) != RT_EOK) { LOG_E ("移除阀门设备失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REMOVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } if (rt_sem_take (&bt_rem_sem, 10000) != RT_EOK) // 等待十秒获取信号量 { LOG_E ("获取移除阀门信号量失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REMOVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { rt_memset (&data[1], 0, 6); if (Flash_Set_Mac_Addr (&data[1], data[0]) == RESET) { LOG_E ("移除阀门设备失败\n"); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REMOVE, temp, RESPONSE_CODE_ACTION_FAILURE); return RT_ERROR; } else { LOG_D ("移除阀门设备成功\n"); Flash_Set_Valve_Num (cnt - 1); ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_VALVE_REMOVE, temp, RESPONSE_CODE_SUCCESS); return RT_EOK; } } #endif } void Handle_Error (struct Ml307_Ops *ops, rt_err_t ret) { LOG_E ("数据帧解析失败,错误码: %d", ret); char imei[16] = {0}; char temp[32] = "0"; Get_IotImei (imei, FLASH_IOT_IMEI_LEN); String2Hex (temp, imei); // 将字符串转为十六进制字符串 ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, ops->recv->cmd, temp, RESPONSE_CODE_PARSE_FAIL); } void Handle_Instruction_Down (struct Ml307_Ops *ops) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)ops; switch (ml307_ops->recv->recv_data.event_type) { case INSTRUCTION_DOWN_SELF_CHECK: Handle_Self_Check (ml307_ops); break; case INSTRUCTION_DOWN_MUTE: Handle_Mute (ml307_ops); break; case INSTRUCTION_DOWN_CLOSE_VALVE: Handle_Close_Valve (ml307_ops); break; case INSTRUCTION_DOWN_OPEN_VALVE: Handle_Open_Valve (ml307_ops); break; case INSTRUCTION_DOWN_OPEN_RELAY: Handle_Open_Relay (ml307_ops); break; case INSTRUCTION_DOWN_CLOSE_RELAY: Handle_Close_Relay (ml307_ops); break; case INSTRUCTION_DOWN_QUERY_PARAMS: Handle_Query_Params (ml307_ops); break; case INSTRUCTION_DOWN_CONFIG_PARAMS: Handle_Config_Params (ml307_ops); break; case INSTRUCTION_DOWN_TIME_CALIBRATION: Handle_Time_Calibration_Data (ml307_ops); break; case INSTRUCTION_DOWN_SEVER_ADDR: Handle_Sever_Addr_Set (ml307_ops); break; case INSTRUCTION_DOWN_VALVE_ADD: Handle_Valve_Add (ml307_ops); break; case INSTRUCTION_DOWN_VALVE_REPLACE: Handle_Valve_Replace (ml307_ops); break; case INSTRUCTION_DOWN_VALVE_REMOVE: Handle_Remove_Valve (ml307_ops); break; } } void Handle_Time_Calibration (struct Ml307_Ops *ops) { rt_uint8_t data[10] = {0}; LOG_D ("服务器下发时间校准数据\n"); rt_memcpy (data, ops->recv->recv_data.res_data, sizeof (data)); TsRtcDateTime rtc_dt; // 提取后4个字节作为时间戳 time_t timestamp = (data[6] << 24) | (data[7] << 16) | (data[8] << 8) | data[9]; Timestamp_To_Rtc_DateTime (timestamp, &rtc_dt); // 打印结果 LOG_I ("时间: %04d-%02d-%02d %02d:%02d:%02d (星期%d)\n", rtc_dt.year, rtc_dt.month, rtc_dt.day, rtc_dt.hour, rtc_dt.minute, rtc_dt.second, rtc_dt.week); RTC_SetTime (rtc_dt.year, rtc_dt.month, rtc_dt.day, rtc_dt.hour, rtc_dt.minute, rtc_dt.second); /* Setup Time */ ops->Resp (ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, INSTRUCTION_DOWN_TIME_CALIBRATION, ML307_DEFIENE_DATA, RESPONSE_CODE_SUCCESS); } void Handle_Cmd_Type (struct Ml307_Ops *ops) { struct Ml307_Ops *ml307_ops = (struct Ml307_Ops *)ops; switch (ml307_ops->recv->cmd) { case CMD_TYPE_SERVER_REPLY: Handle_Server_Reply (ml307_ops); break; case CMD_TYPE_INSTRUCTION_DOWN: Handle_Instruction_Down (ml307_ops); break; case CMD_TYPE_TIME_CALIBRATION: Handle_Time_Calibration (ml307_ops); break; default: ml307_ops->Resp (ml307_ops, DATA_SERIAL_NUM, CMD_TYPE_INSTRUCTION_REPLY, DEVICE_TYPE_ML307, ops->recv->cmd, ML307_DEFIENE_DATA, RESPONSE_CODE_PARSE_FAIL); break; } } void Analyze_Recv_Frame (struct at_device *device, struct Ml307_Ops *ops) { rt_err_t ret = RT_EOK; ret = Compare_HeaderToTail (ops); if (ret == RT_EOK) { Handle_Cmd_Type (ops); } else { Handle_Error (ops, ret); } } /* 上电模式 发送一包数据后,转换到检测模式 120分钟发送一次数据 当有事件发生时,发送一包事件数据包 */ static void Ml307_Send_Thread_Entry (void *param) { rt_err_t result = RT_EOK; rt_uint32_t ml307_recv_event; LOG_D ("ml307 thread entry\n"); struct Ml307_Ops *ops = (struct Ml307_Ops *)param; struct at_device_ml307 *ml307 = &_dev; struct at_device *device = at_device_get_by_name (AT_DEVICE_NAMETYPE_NETDEV, ml307->device_name); RT_ASSERT (device); if (ops->init (ops, PROTOCOL_VERSION) != RT_EOK) { LOG_E ("ml307 init failed\n"); } else { LOG_D ("ml307 init success\n"); rt_completion_wait (&ml307_init_complate, RT_WAITING_FOREVER); // wait for ml307 init finish Ml307_Send_Event (kMl307PowerOnEvent); } while (1) { result = rt_event_recv (&at_device_event, Ml307_Get_Event_Flag (kMl307PowerOnEvent) | Ml307_Get_Event_Flag (kMl307HeartbeatEvent) | Ml307_Get_Event_Flag (kMl307SelfCheckEvent) | Ml307_Get_Event_Flag (kMl307SilenceEvent) | Ml307_Get_Event_Flag (kMl307ExceptionEvent) | Ml307_Get_Event_Flag (kMl307ValveStatusEvent) | Ml307_Get_Event_Flag (kMl307FanStatusEvent) | Ml307_Get_Event_Flag (kMl307TempAnomalyEvent) | Ml307_Get_Event_Flag (kMl307PowerOnEvent) | Ml307_Get_Event_Flag (kMl307PowerDownEvent) | Ml307_Get_Event_Flag (kMl307AlarmEvent) | Ml307_Get_Event_Flag (kMl307AlarmRcyEvent) | Ml307_Get_Event_Flag (kMl307FaultEvent) | Ml307_Get_Event_Flag (kMl307FaultRcyEvent) | Ml307_Get_Event_Flag (kMl307DeviceFailureEvent) | Ml307_Get_Event_Flag (kMl307TimeCalibrationEvent) | Ml307_Get_Event_Flag (kMl307ValveConnectEvent) | Ml307_Get_Event_Flag (KMl307ValveDisconnectEvent), RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &ml307_recv_event); // 这个事件一般是设备端发生了变化,发送到服务器时调用 if (result == RT_EOK) { if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307PowerOnEvent)) { result = Ml307_Process_Events (kMl307PowerOnEvent, device, ops); // 当上电心跳包发送不成功时,其他事件不启动 if (result) { power_on_send_flag = 0; rt_timer_start (ml307_error_timer); // 启动重连定时器, 3min一次,直到发送成功 LOG_E ("ml307 send data failed result = [%d]\n", result); } else { power_on_send_flag = 1; rt_timer_start (ml307_timer); // 当上电心跳包发送成功时, 开始心跳包周期发送 rt_timer_start (ml307_upload_timer); // 周期修改时间更新 } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307PowerDownEvent)) { result = Ml307_Process_Events (kMl307PowerDownEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } ml307_event_initialized = RT_FALSE; // 当接收到掉电事件时,不再接收其他事件 } if (power_on_send_flag) { if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307HeartbeatEvent)) { result = Ml307_Process_Events (kMl307HeartbeatEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307ValveConnectEvent)) { result = Ml307_Process_Events (kMl307ValveConnectEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (KMl307ValveDisconnectEvent)) { result = Ml307_Process_Events (KMl307ValveDisconnectEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307TimeCalibrationEvent)) { Time_Calibration (device); } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307AlarmEvent)) { result = Ml307_Process_Events (kMl307AlarmEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307AlarmRcyEvent)) { result = Ml307_Process_Events (kMl307AlarmRcyEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307FaultEvent)) { if (device_state_flag != 1) // 当设备失效时,只上报失效信息 { result = Ml307_Process_Events (kMl307FaultEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307FaultRcyEvent)) { result = Ml307_Process_Events (kMl307FaultRcyEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307SelfCheckEvent)) { result = Ml307_Process_Events (kMl307SelfCheckEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307SilenceEvent)) { result = Ml307_Process_Events (kMl307SilenceEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307ExceptionEvent)) { result = Ml307_Process_Events (kMl307ExceptionEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307ValveStatusEvent)) { result = Ml307_Process_Events (kMl307ValveStatusEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307FanStatusEvent)) { result = Ml307_Process_Events (kMl307FanStatusEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307TempAnomalyEvent)) { result = Ml307_Process_Events (kMl307TempAnomalyEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } else if (ml307_recv_event & Ml307_Get_Event_Flag (kMl307DeviceFailureEvent)) { result = Ml307_Process_Events (kMl307DeviceFailureEvent, device, ops); if (result) { LOG_E ("ml307 send data failed result = [%d]\n", result); } } } } } } static void Ml307_Recv_Thread_Entry (void *parameter) { struct Ml307_Ops *ops = (struct Ml307_Ops *)parameter; struct at_device_ml307 *ml307 = &_dev; struct at_device *device = at_device_get_by_name (AT_DEVICE_NAMETYPE_NETDEV, ml307->device_name); RT_ASSERT (device); LOG_D ("ml307 recv thread entry\n"); while (1) { if (rt_sem_take (ml307_recv_sem, RT_WAITING_FOREVER) == RT_EOK) { Analyze_Recv_Frame (device, ops); } } } static void Ml307_Life_Thread_Entry (void *parameter) { struct at_device_ml307 *ml307 = &_dev; struct at_device *device = at_device_get_by_name (AT_DEVICE_NAMETYPE_NETDEV, ml307->device_name); RT_ASSERT (device); rt_err_t result = RT_ETIMEOUT; rt_uint32_t delay_n = 0; at_response_t resp = RT_NULL; rt_uint32_t retry_delay = 8000; LOG_D ("ml307_life_thread entry\n"); while (1) { result = rt_sem_take (ml307_disconnect_sem, RT_WAITING_FOREVER); if (result == RT_EOK) { if (!ml307_conncet_tcp_flag) { LOG_D ("重连网络中...\n"); ml307_connect_sever_flag = 0; resp = at_create_resp (256, 0, 5000); if (resp == RT_NULL) { LOG_E ("No memory for response structure!"); at_delete_resp (resp); result = -RT_ETIMEOUT; goto __exit; } if (device->class->device_ops->control (device, AT_DEVICE_CTRL_NET_DISCONN, RT_NULL) == RT_EOK) { rt_thread_mdelay (RT_TICK_PER_SECOND); // 这里如果有TCP连接,先关掉TCP,没有返回错误无所谓 } if (device->class->device_ops->control (device, AT_DEVICE_CTRL_POWER_OFF, RT_NULL) == RT_EOK) { rt_thread_mdelay (RT_TICK_PER_SECOND); if (device->class->device_ops->control (device, AT_DEVICE_CTRL_POWER_ON, RT_NULL) == RT_EOK) { LOG_D ("AT device power on success"); rt_thread_mdelay (RT_TICK_PER_SECOND / 2); /* disable echo */ LOG_D ("AT"); if (at_client_obj_wait_connect (device->client, 10000) != RT_EOK) { result = -RT_ERROR; goto __exit; } /* disable echo */ LOG_D ("ATE0"); if (at_obj_exec_cmd (device->client, resp, "ATE0") != RT_EOK) { result = -RT_ERROR; goto __exit; } /*disable sleep mode */ if (at_obj_exec_cmd (device->client, resp, "AT+MLPMCFG=\"sleepmode\",0,1") != RT_EOK) { result = -RT_ERROR; goto __exit; } /*设置包模式*/ if (at_obj_exec_cmd (device->client, resp, "AT+MIPCFG=\"encoding\",0,1,1") != RT_EOK) { result = -RT_ERROR; goto __exit; } /*设置包模式*/ if (at_obj_exec_cmd (device->client, resp, "AT+MIPCFG=\"autofree\",0,1") != RT_EOK) { result = -RT_ERROR; goto __exit; } /*设置心跳包*/ if (at_obj_exec_cmd (device->client, resp, "AT+MIPTKA=0,1,120,60,3") != RT_EOK) { result = -RT_ERROR; goto __exit; } rt_uint8_t i = 0; /* check SIM card */ for (i = 0; i < 60; i++) { if (at_obj_exec_cmd (device->client, resp, "AT+CPIN?") == RT_EOK) { char code[8] = {0}; if (at_resp_parse_line_args_by_kw (resp, "+CPIN:", "+CPIN: %s", code) > 0) { if (rt_strcmp (code, "READY") == 0) { LOG_D ("%s device SIM card detection success.", device->name); break; } else { LOG_E ("%s device SIM card detection failed.", device->name); result = -RT_ERROR; goto __exit; } } } rt_thread_mdelay (3000); } if (i == 60) { LOG_E ("%s device SIM card detection failed.", device->name); result = -RT_ERROR; goto __exit; } /* Define PDP Context */ for (i = 0; i < 5; i++) { if (at_obj_exec_cmd (device->client, resp, "AT+CGDCONT=1,\"IPV4V6\",\"cmnet\"") == RT_EOK) { LOG_D ("%s device Define PDP Context Success.", device->name); break; } rt_thread_mdelay (1000); } if (i == 5) { LOG_E ("%s device Define PDP Context failed.", device->name); result = -RT_ERROR; goto __exit; } /* check the GPRS network is registered */ for (i = 0; i < 60; i++) { if (at_obj_exec_cmd (device->client, resp, "AT+CEREG?") == RT_EOK) { int link_stat = 0; if (at_resp_parse_line_args_by_kw (resp, "+CEREG:", "+CEREG: %*d,%d", &link_stat) > 0) { if ((link_stat == 1) || (link_stat == 5)) { LOG_D ("%s device GPRS is registered", device->name); break; } } } rt_thread_mdelay (1000); } if (i == 60) { LOG_E ("%s device GPRS is register failed", device->name); result = -RT_ERROR; goto __exit; } if (at_obj_exec_cmd (device->client, resp, "AT+MIPCALL=1,1") != RT_EOK) { result = -RT_ERROR; goto __exit; } #if defined(AT_DEBUG) /* check the GPRS network IP address */ for (i = 0; i < 10; i++) { if (at_obj_exec_cmd (device->client, resp, "AT+MIPCALL?") == RT_EOK) { #define IP_ADDR_SIZE_MAX 16 char ipaddr_str[8 * IP_ADDR_SIZE_MAX] = {0}; char ipaddr_v4[IP_ADDR_SIZE_MAX] = {0}; char ipaddr_v6[4 * IP_ADDR_SIZE_MAX] = {0}; /* parse response data "+CGPADDR: 1," */ if (at_resp_parse_line_args_by_kw (resp, "+MIPCALL:", "+MIPCALL: %*d,%*d,%s", ipaddr_str) > 0) { const char *ipaddr_v4_str = rt_strstr (ipaddr_str, "\""); sscanf (ipaddr_v4_str, "\"%[^\"]", ipaddr_v4); const char *ipaddr_v6_str = rt_strstr (ipaddr_str, "\",\""); sscanf (ipaddr_v6_str, "\",\"%[^\"]", ipaddr_v6); LOG_D ("%s device IP address: %s - %s", device->name, ipaddr_v4, ipaddr_v6); break; } } rt_thread_mdelay (2000); } if (i == 10) { LOG_E ("%s device GPRS is get IP address failed", device->name); result = -RT_ERROR; goto __exit; } #endif if (device->class->device_ops->control (device, AT_DEVICE_CTRL_NET_CONN, RT_NULL) == RT_EOK) { LOG_D ("重连网络成功\n"); ml307_conncet_tcp_flag = 1; delay_n = 0; ml307_disconnect_retry_flag = 0; at_delete_resp (resp); retry_delay = 8000; // 重置重连延迟时间 rt_thread_mdelay (100); Ml307_Send_Event (kMl307HeartbeatEvent); } else { result = -RT_ETIMEOUT; goto __exit; } } else { result = -RT_ETIMEOUT; goto __exit; } } else { result = -RT_ETIMEOUT; goto __exit; } } else { ml307_disconnect_retry_flag = 0; Ml307_Send_Event (kMl307HeartbeatEvent); } } else { delay_n = 0; result = -RT_ETIMEOUT; goto __exit; } __exit: if (result != RT_EOK) { if (resp != RT_NULL) { at_delete_resp (resp); } ml307_disconnect_retry_flag = 1; LOG_D ("联网错误,等待%dms后重连", retry_delay); rt_thread_mdelay (retry_delay); retry_delay = MIN (retry_delay * 2, 1800000); // 最大延迟30min delay_n++; if (delay_n >= 21) // 连续重连大于1小时都不行,则重启设备 { Flash_Set_WorkDuration (work_duration); rt_thread_mdelay (100); reboot(); } ml307_conncet_tcp_flag = 0; rt_sem_release (ml307_disconnect_sem); } } } static void Ml307_Upload_Timer_Cb (void *parameter) { Ml307_Send_Event (kMl307TimeCalibrationEvent); // 更新下时间 } int BSP_Ml307_Thread_Init (void) { rt_err_t ret; Ml307_Event_Init(); rt_uint32_t iot_upload_time = (uint32_t)Flash_Get_SysCfg (kIotUploadCycleId); rt_uint32_t timeout = 0; if (iot_upload_time > 24 * 60 * 60 * RT_TICK_PER_SECOND) { timeout = 24 * 60 * 60 * RT_TICK_PER_SECOND; LOG_E ("iot_upload_time > 24 * 60 * 60 * RT_TICK_PER_SECOND"); } else { timeout = (iot_upload_time * 60 * RT_TICK_PER_SECOND); if (timeout >= RT_TICK_MAX / 2) // 超了就直接默认值 { timeout = 60 * 60 * RT_TICK_PER_SECOND; } } LOG_I ("上报服务器周期:%d分钟", iot_upload_time); ml307_mutex = rt_mutex_create ("ml307_mutex", RT_IPC_FLAG_FIFO); if (ml307_mutex == RT_NULL) { LOG_E ("ml307_mutex create failed"); } ml307_recv_sem = rt_sem_create ("ml307_recv", 0, RT_IPC_FLAG_PRIO); if (ml307_recv_sem == RT_NULL) { LOG_E ("ml307_recv_sem create failed"); } ml307_recv_msg_sem = rt_sem_create ("ml307_recv_heart", 0, RT_IPC_FLAG_PRIO); if (ml307_recv_msg_sem == RT_NULL) { LOG_E ("ml307_recv_msg_sem create failed"); } ml307_disconnect_sem = rt_sem_create ("ml307_life", 0, RT_IPC_FLAG_PRIO); if (ml307_disconnect_sem == RT_NULL) { LOG_E ("ml307_disconnect_sem create failed"); } // 创建定时器 ml307_timer = rt_timer_create ("heartbeat", Ml307_Ht_Timer_Cb, // 回调函数 RT_NULL, // 参数 timeout, // 定时周期(120分钟) RT_TIMER_FLAG_PERIODIC); // 周期性定时器 if (ml307_timer == RT_NULL) { rt_kprintf ("创建定时器失败\n"); return -1; } ml307_error_timer = rt_timer_create ("ml307_error_timer", Ml307_Error_Timer_Cb, RT_NULL, 3 * 60 * RT_TICK_PER_SECOND, // (3分钟) RT_TIMER_FLAG_PERIODIC); ml307_upload_timer = rt_timer_create ("ml307_upload_timer", Ml307_Upload_Timer_Cb, RT_NULL, 24 * 60 * 60 * RT_TICK_PER_SECOND, // RT_TIMER_FLAG_PERIODIC); ret = rt_thread_init (&ml307_thread, "ml307_send_thread", Ml307_Send_Thread_Entry, &ml307_ops, &ml307_thread_stack[0], sizeof (ml307_thread_stack), ML307_THREAD_PRIORITY, ML307_THREAD_TICKS); rt_thread_startup (&ml307_thread); ret = rt_thread_init (&ml307_recv_thread, "ml307_recv_thread", Ml307_Recv_Thread_Entry, &ml307_ops, &ml307_recv_thread_stack[0], sizeof (ml307_recv_thread_stack), ML307_RECV_THREAD_PRIORITY, ML307_RECV_THREAD_TICKS); rt_thread_startup (&ml307_recv_thread); ret = rt_thread_init (&ml307_life_thread, "ml307_life_thread", Ml307_Life_Thread_Entry, &ml307_ops, &ml307_life_thread_stack[0], sizeof (ml307_life_thread_stack), ML307_LIFE_THREAD_PRIORITY, ML307_LIFE_THREAD_TICKS); rt_thread_startup (&ml307_life_thread); return ret; } // INIT_APP_EXPORT(BSP_Ml307_Thread_Init); int ml307_device_register (void) { struct at_device_ml307 *ml307 = &_dev; return at_device_register (&(ml307->device), ml307->device_name, ml307->client_name, AT_DEVICE_CLASS_ML307, (void *)ml307); } // INIT_DEVICE_EXPORT(ml307_device_register); #endif // IOT_MODULE_SWITCH