IoT_SCV_CH584M/bsp/src/bsp_bmp390.c

856 lines
28 KiB
C
Raw Normal View History

#include "bsp_bmp390.h"
#include "bsp_motor.h"
#include "bsp_led.h"
#include "bsp_key.h"
#include "CONFIG.h"
#include "log.h"
#include "bsp_ml307r.h"
#include "SLEEP.h"
#include "bsp_valve.h"
uint8_t flag;
uint8_t volatile fault_state = 0;
extern uint8_t motor_flag;
2025-03-21 11:44:42 +08:00
extern Shell shell;
static tmosTaskID check_task_id = INVALID_TASK_ID;
typedef enum
{
kPressIn = 0,
kPressOut = 1,
kPressAtom = 2,
kPressMaxIndex
} TePressSensorIndex;
static tmosTaskID press_task_id = INVALID_TASK_ID;
2025-05-13 17:29:54 +08:00
#define PRESS_IN_CS_HIGH() GPIOA_SetBits(GPIO_Pin_8)
#define PRESS_IN_CS_LOW() GPIOA_ResetBits(GPIO_Pin_8)
2025-05-13 17:29:54 +08:00
#define PRESS_OUT_CS_HIGH() GPIOA_SetBits(GPIO_Pin_2)
#define PRESS_OUT_CS_LOW() GPIOA_ResetBits(GPIO_Pin_2)
2025-05-13 17:29:54 +08:00
#define PRESS_ATOM_CS_HIGH() GPIOA_SetBits(GPIO_Pin_0)
#define PRESS_ATOM_CS_LOW() GPIOA_ResetBits(GPIO_Pin_0)
uint8_t volatile press_done_flag = 0;
uint8_t SPI0_SendByte(uint8_t data);
void SPI_CsStart(TePressSensorIndex index);
void SPI_CsStop(TePressSensorIndex index);
/* Variable to store the device address */
static uint8_t dev_in_addr;
static uint8_t dev_out_addr;
static uint8_t dev_atom_addr;
uint8_t Bmp_ReadData(uint8_t *reg_data, uint32_t len)
{
while (len--)
{
*reg_data = SPI0_SendByte(0x00);
reg_data++;
}
return BMP3_INTF_RET_SUCCESS;
}
BMP3_INTF_RET_TYPE Bmp_WriteData(const uint8_t *reg_data, uint32_t len)
{
uint8_t i = 0;
for (i = 0; i < len; i++)
{
SPI0_SendByte(reg_data[i]);
}
return BMP3_INTF_RET_SUCCESS;
}
BMP3_INTF_RET_TYPE BMP390_IN_SPI_Read(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
BMP3_INTF_RET_TYPE rslt = 0;
uint8_t reg_spi[1] = {(reg_addr & 0x7F) | 0x80};
SPI_CsStart(kPressIn); // <20><><EFBFBD><EFBFBD>Ƭѡ
Bmp_WriteData(reg_spi, 1); // д<><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD>
rslt = Bmp_ReadData(reg_data, len);
SPI_CsStop(kPressIn);
return rslt;
}
/*!
* SPI write function map to COINES platform
*/
BMP3_INTF_RET_TYPE BMP390_IN_SPI_Write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
uint8_t reg_spi[1] = {reg_addr & 0x7f};
BMP3_INTF_RET_TYPE rslt = 0;
SPI_CsStart(kPressIn);
Bmp_WriteData(reg_spi, 1);
rslt = Bmp_WriteData(reg_data, len);
SPI_CsStop(kPressIn);
// printf("BMP390_OUT_SPI_Write: %d" , rslt);
return rslt;
}
/*!
* SPI read function map to COINES platform
*/
BMP3_INTF_RET_TYPE BMP390_OUT_SPI_Read(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
BMP3_INTF_RET_TYPE rslt = 0;
uint8_t reg_spi[1] = {(reg_addr & 0x7F) | 0x80};
SPI_CsStart(kPressOut); // <20><><EFBFBD><EFBFBD>Ƭѡ
Bmp_WriteData(reg_spi, 1); // д<><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD>
rslt = Bmp_ReadData(reg_data, len);
SPI_CsStop(kPressOut);
return rslt;
}
/*!
* SPI write function map to COINES platform
*/
BMP3_INTF_RET_TYPE BMP390_OUT_SPI_Write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
uint8_t reg_spi[1] = {reg_addr & 0x7f};
BMP3_INTF_RET_TYPE rslt = 0;
SPI_CsStart(kPressOut);
Bmp_WriteData(reg_spi, 1);
rslt = Bmp_WriteData(reg_data, len);
SPI_CsStop(kPressOut);
// printf("BMP390_OUT_SPI_Write: %d" , rslt);
return rslt;
}
BMP3_INTF_RET_TYPE BMP390_ATOM_SPI_Read(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
BMP3_INTF_RET_TYPE rslt = 0;
uint8_t reg_spi[1] = {(reg_addr & 0x7F) | 0x80};
SPI_CsStart(kPressAtom); // <20><><EFBFBD><EFBFBD>Ƭѡ
Bmp_WriteData(reg_spi, 1); // д<><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD>
rslt = Bmp_ReadData(reg_data, len);
SPI_CsStop(kPressAtom);
return rslt;
}
/*!
* SPI write function map to COINES platform
*/
BMP3_INTF_RET_TYPE BMP390_ATOM_SPI_Write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t len, void *intf_ptr)
{
uint8_t reg_spi[1] = {reg_addr & 0x7f};
BMP3_INTF_RET_TYPE rslt = 0;
SPI_CsStart(kPressAtom);
Bmp_WriteData(reg_spi, 1);
rslt = Bmp_WriteData(reg_data, len);
SPI_CsStop(kPressAtom);
// printf("BMP390_OUT_SPI_Write: %d" , rslt);
return rslt;
}
void bmp3_delay_us(uint32_t period, void *intf_ptr)
{
DelayUs(period);
}
void bmp3_check_rslt(const char api_name[], int8_t rslt)
{
switch (rslt)
{
case BMP3_OK:
/* Do nothing */
break;
case BMP3_E_NULL_PTR:
printf("API [%s] Error [%d] : Null pointer\r\n", api_name, rslt);
break;
case BMP3_E_COMM_FAIL:
printf("API [%s] Error [%d] : Communication failure\r\n", api_name, rslt);
break;
case BMP3_E_INVALID_LEN:
printf("API [%s] Error [%d] : Incorrect length parameter\r\n", api_name, rslt);
break;
case BMP3_E_DEV_NOT_FOUND:
printf("API [%s] Error [%d] : Device not found\r\n", api_name, rslt);
break;
case BMP3_E_CONFIGURATION_ERR:
printf("API [%s] Error [%d] : Configuration Error\r\n", api_name, rslt);
break;
case BMP3_W_SENSOR_NOT_ENABLED:
printf("API [%s] Error [%d] : Warning when Sensor not enabled\r\n", api_name, rslt);
break;
case BMP3_W_INVALID_FIFO_REQ_FRAME_CNT:
printf("API [%s] Error [%d] : Warning when Fifo watermark level is not in limit\r\n", api_name, rslt);
break;
default:
printf("API [%s] Error [%d] : Unknown error code\r\n", api_name, rslt);
break;
}
}
BMP3_INTF_RET_TYPE BMP390_IN_InterfaceInit(struct bmp3_dev *bmp3, uint8_t intf)
{
int8_t rslt = BMP3_OK;
/* Bus configuration : SPI */
if (intf == BMP3_SPI_INTF)
{
printf("SPI Interface\n");
bmp3->read = BMP390_IN_SPI_Read;
bmp3->write = BMP390_IN_SPI_Write;
bmp3->intf = BMP3_SPI_INTF;
printf("spi init ok\r\n");
}
DelayMs(100);
bmp3->delay_us = bmp3_delay_us;
bmp3->intf_ptr = &dev_in_addr;
return rslt;
}
BMP3_INTF_RET_TYPE BMP390_OUT_InterfaceInit(struct bmp3_dev *bmp3, uint8_t intf)
{
int8_t rslt = BMP3_OK;
/* Bus configuration : SPI */
if (intf == BMP3_SPI_INTF)
{
printf("SPI Interface\n");
bmp3->read = BMP390_OUT_SPI_Read;
bmp3->write = BMP390_OUT_SPI_Write;
bmp3->intf = BMP3_SPI_INTF;
printf("spi init ok\r\n");
}
DelayMs(100);
bmp3->delay_us = bmp3_delay_us;
bmp3->intf_ptr = &dev_out_addr;
return rslt;
}
BMP3_INTF_RET_TYPE BMP390_ATOM_InterfaceInit(struct bmp3_dev *bmp3, uint8_t intf)
{
int8_t rslt = BMP3_OK;
/* Bus configuration : SPI */
if (intf == BMP3_SPI_INTF)
{
printf("SPI Interface\n");
bmp3->read = BMP390_ATOM_SPI_Read;
bmp3->write = BMP390_ATOM_SPI_Write;
bmp3->intf = BMP3_SPI_INTF;
printf("spi init ok\r\n");
}
DelayMs(100);
bmp3->delay_us = bmp3_delay_us;
bmp3->intf_ptr = &dev_atom_addr;
return rslt;
}
void SPI_CsStart(TePressSensorIndex index)
{
switch (index)
{
case kPressIn:
PRESS_IN_CS_LOW();
break;
case kPressOut:
PRESS_OUT_CS_LOW();
break;
case kPressAtom:
PRESS_ATOM_CS_LOW();
break;
default:
break;
}
}
void SPI_CsStop(TePressSensorIndex index)
{
switch (index)
{
case kPressIn:
PRESS_IN_CS_HIGH();
break;
case kPressOut:
PRESS_OUT_CS_HIGH();
break;
case kPressAtom:
PRESS_ATOM_CS_HIGH();
break;
default:
break;
}
}
uint8_t SPI0_SendByte(uint8_t data)
{
R8_SPI0_BUFFER = data;
while (!(R8_SPI0_INT_FLAG & RB_SPI_FREE));
return (R8_SPI0_BUFFER);
}
void PRESS_IO_SPI_Init(void)
{
/**
* CSB1: PA3
* CSB2: PA5
* CSB3: PA0
* SCL: PA13
* SDA: PA14
* SDO: PA15
*/
// SDA: MOSI
// SDO: MISO
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_2);
GPIOA_ModeCfg(GPIO_Pin_2, GPIO_ModeOut_PP_5mA);
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_8);
GPIOA_ModeCfg(GPIO_Pin_8, GPIO_ModeOut_PP_5mA);
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_0);
GPIOA_ModeCfg(GPIO_Pin_0, GPIO_ModeOut_PP_5mA);
SPI_CsStop(kPressIn);
SPI_CsStop(kPressOut);
SPI_CsStop(kPressAtom);
// spi<70><69>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ģʽ0
GPIOA_ModeCfg(GPIO_Pin_13 | GPIO_Pin_14, GPIO_ModeOut_PP_5mA);
GPIOA_ModeCfg(GPIO_Pin_15, GPIO_ModeIN_PU);
SPI0_MasterDefInit();
}
void PRESS_LowerIO_Init(void)
{
// BMP390Ĭ<30>Ϲ<EFBFBD><CFB9><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>IO<49><4F><EFBFBD>Ǹߵ<C7B8>ƽ,INT<4E><54><EFBFBD><EFBFBD>Ϊ<EFBFBD>͵<EFBFBD>ƽ
// SPI
GPIOA_SetBits(GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15);
GPIOA_ModeCfg(GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15, GPIO_ModeIN_PU);
// CSB3: PA0
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_2);
GPIOA_ModeCfg(GPIO_Pin_2, GPIO_ModeIN_PU);
// CSB2: PA5
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_8);
GPIOA_ModeCfg(GPIO_Pin_8, GPIO_ModeIN_PU);
// CSB1: PA3
2025-05-13 17:29:54 +08:00
GPIOA_SetBits(GPIO_Pin_0);
GPIOA_ModeCfg(GPIO_Pin_0, GPIO_ModeIN_PU);
}
void Lower_IO_Deinit(void)
{
// LED
2025-05-13 17:29:54 +08:00
GPIOB_ResetBits(LED_VALVE_R_PIN | LED_VALVE_G_PIN);
GPIOB_ModeCfg(LED_VALVE_R_PIN | LED_VALVE_G_PIN, GPIO_ModeIN_PD);
GPIOA_ResetBits(LED_VBAT_PIN | LED_ALARM_PIN);
GPIOA_ModeCfg(LED_VBAT_PIN | LED_ALARM_PIN, GPIO_ModeIN_PD);
// KEY | RESET KEY | boot KEY
2025-05-13 17:29:54 +08:00
GPIOA_ResetBits(KEY_A_PIN );
GPIOA_ModeCfg(KEY_A_PIN, GPIO_ModeIN_PU);
// GPIOB_ResetBits(GPIO_Pin_23 | GPIO_Pin_22);
// GPIOB_ModeCfg(GPIO_Pin_23 | GPIO_Pin_22, GPIO_ModeIN_PD);
// ADC
GPIOA_ResetBits(GPIO_Pin_4);
2025-03-21 11:44:42 +08:00
GPIOA_ModeCfg(GPIO_Pin_4, GPIO_ModeIN_Floating);
ADC_DisablePower();
// BMP390
// INT1: PA2 | INT2: PA6 | INT3: PA12
2025-05-13 17:29:54 +08:00
GPIOA_ModeCfg(GPIO_Pin_6 | GPIO_Pin_9 | GPIO_Pin_3, GPIO_ModeIN_PD);
// spi<70><69>ʼ<EFBFBD><CABC>
GPIOA_ModeCfg(GPIO_Pin_13 | GPIO_Pin_14, GPIO_ModeIN_PD);
GPIOA_ModeCfg(GPIO_Pin_15, GPIO_ModeIN_PD);
//4G
// <20>ر<EFBFBD>3.8V<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
GPIOB_ResetBits(ENABLE_3_8_V);
GPIOB_ModeCfg(ENABLE_3_8_V, GPIO_ModeIN_PD);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>©<EFBFBD><C2A9><EFBFBD><EFBFBD>
GPIOB_ModeCfg(ML307_PWR_PIN | ML307_RST_PIN, GPIO_ModeIN_PD);
// UART<52><54><EFBFBD><EFBFBD>
GPIOB_ModeCfg(ML307_UART_TX_PIN, GPIO_ModeIN_PD);
GPIOB_ModeCfg(ML307_UART_RX_PIN, GPIO_ModeIN_PU);
// SIM<49><4D><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
GPIOB_ModeCfg(USIM_DECT_PIN, GPIO_ModeIN_PD);
//motor
2025-05-13 17:29:54 +08:00
//GPIOA_ResetBits(COIL_ADC);
//GPIOA_ModeCfg(COIL_ADC, GPIO_ModeIN_PD);
//IN1 + ; IN2 +
//GPIOB_SetBits(COIL_A);
//GPIOB_SetBits(COIL_B);
2025-05-13 17:29:54 +08:00
//GPIOB_ModeCfg(COIL_A | COIL_B, GPIO_ModeIN_PD);
2025-03-21 11:44:42 +08:00
// UART3
// GPIOB_ModeCfg(GPIO_Pin_21 | GPIO_Pin_20, GPIO_ModeIN_PD);
// // <20>ر<EFBFBD>UART3ʱ<33><CAB1>
// sys_safe_access_enable();
// R8_SLP_CLK_OFF0 |= RB_SLP_CLK_UART3;
// sys_safe_access_disable();
// // <20>ر<EFBFBD>shell<6C><6C><EFBFBD><EFBFBD>־ϵͳ
// shell.write = NULL; // <20><><EFBFBD><EFBFBD>shell<6C><6C><EFBFBD><EFBFBD>
// <20>ر<EFBFBD><D8B1>ⲿ<EFBFBD><E2B2BF><EFBFBD>پ<EFBFBD><D9BE><EFBFBD>
// GPIOA_ModeCfg(GPIO_Pin_10 | GPIO_Pin_11, GPIO_ModeIN_PD);
}
void PRESS_LowPower(void)
{
Lower_IO_Deinit();
if (press_done_flag == 1)
{
PRESS_LowerIO_Init();
}
}
int8_t ret = 0;
uint8_t loop = 0;
struct bmp3_dev DevIn;
struct bmp3_dev DevOut;
struct bmp3_dev DevAtom;
uint16_t settings_sel;
struct bmp3_data data = {0};
struct bmp3_settings settings = {0};
struct bmp3_status status = {{0}};
//T,P
int32_t T[3] = {0};
int32_t P[3] = {0};
__HIGH_CODE
__attribute__((noinline))
uint16_t
BMP390_ProcessEvent(uint8_t task_id, uint16_t events)
{
if (events & BMP390_IN_START)
{
press_done_flag = 0;
PRESS_IO_SPI_Init();
settings.op_mode = BMP3_MODE_FORCED;
ret = bmp3_set_op_mode(&settings, &DevIn);
bmp3_check_rslt("bmp3_set_op_mode", ret);
return (events ^ BMP390_IN_START);
}
else if(events & BMP390_OUT_START)
{
press_done_flag = 0;
PRESS_IO_SPI_Init();
settings.op_mode = BMP3_MODE_FORCED;
ret = bmp3_set_op_mode(&settings, &DevOut);
bmp3_check_rslt("bmp3_set_op_mode", ret);
return (events ^ BMP390_OUT_START);
}
else if(events & BMP390_ATOM_START)
{
press_done_flag = 0;
PRESS_IO_SPI_Init();
settings.op_mode = BMP3_MODE_FORCED;
ret = bmp3_set_op_mode(&settings, &DevAtom);
bmp3_check_rslt("bmp3_set_op_mode", ret);
return (events ^ BMP390_ATOM_START);
}
else if (events & BMP390_EVT_READ)
{
PRESS_IO_SPI_Init();
#if 0
PRESS_IO_SPI_Init();
// IN
ret = bmp3_get_status(&status, &DevIn);
bmp3_check_rslt("bmp3_get_status", ret);
/* Read temperature and pressure data iteratively based on data ready interrupt */
if ((ret == BMP3_OK) && (status.intr.drdy == BMP3_ENABLE))
{
/*
* First parameter indicates the type of data to be read
* BMP3_PRESS_TEMP : To read pressure and temperature data
* BMP3_TEMP : To read only temperature data
* BMP3_PRESS : To read only pressure data
*/
ret = bmp3_get_sensor_data(BMP3_PRESS_TEMP, &data, &DevIn);
bmp3_check_rslt("bmp3_get_sensor_data", ret);
/* NOTE : Read status register again to clear data ready interrupt status */
ret = bmp3_get_status(&status, &DevIn);
bmp3_check_rslt("bmp3_get_status", ret);
#ifdef BMP3_FLOAT_COMPENSATION
printf("IN[%d] T: %.2f deg C, P: %.2f Pa\n", loop, (data.temperature), (data.pressure));
#else
printf("IN[%d] T: %ld deg C, P: %lu Pa\n", loop, (long int)(int32_t)(data.temperature / 100),
(long unsigned int)(uint32_t)(data.pressure / 100));
#endif
}
// OUT
ret = bmp3_get_status(&status, &DevOut);
bmp3_check_rslt("bmp3_get_status", ret);
/* Read temperature and pressure data iteratively based on data ready interrupt */
if ((ret == BMP3_OK) && (status.intr.drdy == BMP3_ENABLE))
{
/*
* First parameter indicates the type of data to be read
* BMP3_PRESS_TEMP : To read pressure and temperature data
* BMP3_TEMP : To read only temperature data
* BMP3_PRESS : To read only pressure data
*/
ret = bmp3_get_sensor_data(BMP3_PRESS_TEMP, &data, &DevOut);
bmp3_check_rslt("bmp3_get_sensor_data", ret);
/* NOTE : Read status register again to clear data ready interrupt status */
ret = bmp3_get_status(&status, &DevOut);
bmp3_check_rslt("bmp3_get_status", ret);
#ifdef BMP3_FLOAT_COMPENSATION
printf("OUT[%d] T: %.2f deg C, P: %.2f Pa\n", loop, (data.temperature), (data.pressure));
#else
printf("OUT[%d] T: %ld deg C, P: %lu Pa\n", loop, (long int)(int32_t)(data.temperature / 100),
(long unsigned int)(uint32_t)(data.pressure / 100));
#endif
loop = loop + 1;
}
tmos_start_task(press_task_id, WF5803_EVT_START, MS1_TO_SYSTEM_TIME(2000));
#endif
if(flag == 1)
{
ret = bmp3_get_status(&status, &DevIn); // <20><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>ģʽ<C4A3><CABD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA>ȡint_status.drdyλ<79><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>״̬<D7B4><CCAC>־
bmp3_check_rslt("bmp3_get_status", ret);
if (status.intr.drdy == BMP3_ENABLE)
{
/*
* First parameter indicates the type of data to be read
* BMP3_PRESS_TEMP : To read pressure and temperature data
* BMP3_TEMP : To read only temperature data
* BMP3_PRESS : To read only pressure data
*/
ret = bmp3_get_sensor_data(BMP3_PRESS_TEMP, &data, &DevIn);
bmp3_check_rslt("bmp3_get_sensor_data", ret);
/* NOTE : Read status register again to clear data ready interrupt status */
ret = bmp3_get_status(&status, &DevIn);
bmp3_check_rslt("bmp3_get_status", ret);
// printf("IN[%d] T: %ld deg C, P: %lu Pa\r\n", loop, (long int)(int32_t)(data.temperature / 100),
// (long unsigned int)(uint32_t)(data.pressure / 100));
T[0] = (int32_t)(data.temperature / 100);
P[0] = (uint32_t)(data.pressure / 100);
}
//tmos_start_task(press_task_id, BMP390_ATOM_START, MS1_TO_SYSTEM_TIME(100));
tmos_start_task(press_task_id, BMP390_OUT_START, MS1_TO_SYSTEM_TIME(500)); //100
//tmos_start_task(press_task_id, BMP390_IN_START, MS1_TO_SYSTEM_TIME(1000));
}
else if(flag == 2)
{
ret = bmp3_get_status(&status, &DevOut); // <20><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>ģʽ<C4A3><CABD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA>ȡint_status.drdyλ<79><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>״̬<D7B4><CCAC>־
bmp3_check_rslt("bmp3_get_status", ret);
if (status.intr.drdy == BMP3_ENABLE)
{
/*
* First parameter indicates the type of data to be read
* BMP3_PRESS_TEMP : To read pressure and temperature data
* BMP3_TEMP : To read only temperature data
* BMP3_PRESS : To read only pressure data
*/
ret = bmp3_get_sensor_data(BMP3_PRESS_TEMP, &data, &DevOut);
bmp3_check_rslt("bmp3_get_sensor_data", ret);
/* NOTE : Read status register again to clear data ready interrupt status */
ret = bmp3_get_status(&status, &DevOut);
bmp3_check_rslt("bmp3_get_status", ret);
// printf("OUT[%d] T: %ld deg C, P: %lu Pa\r\n", loop, (long int)(int32_t)(data.temperature / 100),
// (long unsigned int)(uint32_t)(data.pressure / 100));
T[1] = (int32_t)(data.temperature / 100);
P[1] = (uint32_t)(data.pressure / 100);
}
tmos_start_task(press_task_id, BMP390_ATOM_START, MS1_TO_SYSTEM_TIME(500)); //100
//tmos_start_task(press_task_id, BMP390_OUT_START, MS1_TO_SYSTEM_TIME(1000));
}
else if(flag == 3)
{
ret = bmp3_get_status(&status, &DevAtom); // <20><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>ģʽ<C4A3><CABD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA>ȡint_status.drdyλ<79><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>״̬<D7B4><CCAC>־
bmp3_check_rslt("bmp3_get_status", ret);
if (status.intr.drdy == BMP3_ENABLE)
{
/*
* First parameter indicates the type of data to be read
* BMP3_PRESS_TEMP : To read pressure and temperature data
* BMP3_TEMP : To read only temperature data
* BMP3_PRESS : To read only pressure data
*/
ret = bmp3_get_sensor_data(BMP3_PRESS_TEMP, &data, &DevAtom);
bmp3_check_rslt("bmp3_get_sensor_data", ret);
/* NOTE : Read status register again to clear data ready interrupt status */
ret = bmp3_get_status(&status, &DevAtom);
bmp3_check_rslt("bmp3_get_status", ret);
// printf("ATOM[%d] T: %ld deg C, P: %lu Pa\r\n", loop, (long int)(int32_t)(data.temperature / 100),
// (long unsigned int)(uint32_t)(data.pressure / 100));
T[2] = (int32_t)(data.temperature / 100);
P[2] = (uint32_t)(data.pressure / 100);
//printf("%d, %d, %d\r\n",T[0],T[1],T[2]);
printf("%d, %d, %d, %d, %d, %d, %d \r\n",T[0],T[1],T[2],P[0],P[1],P[2],P[0]-P[1]);
}
tmos_start_task(press_task_id, BMP390_IN_START, MS1_TO_SYSTEM_TIME(500)); //100
//tmos_start_task(press_task_id, BMP390_ATOM_START, MS1_TO_SYSTEM_TIME(1000));
}
flag = 0;
press_done_flag = 1;
loop = loop + 1;
return (events ^ BMP390_EVT_READ);
}
return 0;
}
void BSP_PRESS_Init(void)
{
PRESS_IO_SPI_Init();
// <20>ж<EFBFBD><D0B6><EFBFBD><EFBFBD>ŵ<EFBFBD><C5B5><EFBFBD><EFBFBD><EFBFBD>
2025-05-13 17:29:54 +08:00
GPIOA_ModeCfg(GPIO_Pin_9, GPIO_ModeIN_PD);
GPIOA_ITModeCfg(GPIO_Pin_9, GPIO_ITMode_RiseEdge);
2025-05-13 17:29:54 +08:00
GPIOA_ModeCfg(GPIO_Pin_3, GPIO_ModeIN_PD);
GPIOA_ITModeCfg(GPIO_Pin_3, GPIO_ITMode_RiseEdge);
2025-05-13 17:29:54 +08:00
GPIOA_ModeCfg(GPIO_Pin_6, GPIO_ModeIN_PD);
GPIOA_ITModeCfg(GPIO_Pin_6, GPIO_ITMode_RiseEdge);
PWR_PeriphWakeUpCfg(ENABLE, RB_GPIO_WAKE_MODE | RB_SLP_GPIO_WAKE, Long_Delay);
PFIC_EnableIRQ(GPIO_A_IRQn);
// IN
ret = BMP390_IN_InterfaceInit(&DevIn, BMP3_SPI_INTF);
bmp3_check_rslt("BMP390_OUT_InterfaceInit", ret);
ret = bmp3_init(&DevIn);
bmp3_check_rslt("bmp3_init", ret);
settings.int_settings.drdy_en = BMP3_ENABLE;
settings.int_settings.latch = BMP3_INT_PIN_LATCH;
settings.int_settings.level = BMP3_INT_PIN_ACTIVE_HIGH;
settings.int_settings.output_mode = BMP3_INT_PIN_PUSH_PULL;
settings.press_en = BMP3_ENABLE;
settings.temp_en = BMP3_ENABLE;
settings.odr_filter.press_os = BMP3_OVERSAMPLING_2X; //BMP3_OVERSAMPLING_2X
settings.odr_filter.temp_os = BMP3_OVERSAMPLING_2X; //BMP3_OVERSAMPLING_2X
2025-03-21 11:44:42 +08:00
settings.odr_filter.odr = BMP3_ODR_0_39_HZ; //BMP3_ODR_1_5_HZ
settings.odr_filter.iir_filter = BMP3_IIR_FILTER_COEFF_1; //BMP3_IIR_FILTER_COEFF_3
settings_sel = BMP3_SEL_PRESS_EN | BMP3_SEL_TEMP_EN | BMP3_SEL_PRESS_OS | BMP3_SEL_TEMP_OS | BMP3_SEL_ODR | BMP3_SEL_DRDY_EN | BMP3_SEL_IIR_FILTER | BMP3_SEL_OUTPUT_MODE | BMP3_SEL_LEVEL | BMP3_SEL_LATCH;
ret = bmp3_set_sensor_settings(settings_sel, &settings, &DevIn);
bmp3_check_rslt("bmp3_set_sensor_settings", ret);
// OUT
ret = BMP390_OUT_InterfaceInit(&DevOut, BMP3_SPI_INTF);
bmp3_check_rslt("BMP390_OUT_InterfaceInit", ret);
ret = bmp3_init(&DevOut);
bmp3_check_rslt("bmp3_init", ret);
settings.int_settings.drdy_en = BMP3_ENABLE;
settings.int_settings.latch = BMP3_INT_PIN_LATCH;
settings.int_settings.level = BMP3_INT_PIN_ACTIVE_HIGH;
settings.int_settings.output_mode = BMP3_INT_PIN_PUSH_PULL;
settings.press_en = BMP3_ENABLE;
settings.temp_en = BMP3_ENABLE;
settings.odr_filter.press_os = BMP3_OVERSAMPLING_2X;
settings.odr_filter.temp_os = BMP3_OVERSAMPLING_2X;
2025-03-21 11:44:42 +08:00
settings.odr_filter.odr = BMP3_ODR_0_39_HZ;
settings.odr_filter.iir_filter = BMP3_IIR_FILTER_COEFF_1;
settings_sel = BMP3_SEL_PRESS_EN | BMP3_SEL_TEMP_EN | BMP3_SEL_PRESS_OS | BMP3_SEL_TEMP_OS | BMP3_SEL_ODR | BMP3_SEL_DRDY_EN | BMP3_SEL_IIR_FILTER | BMP3_SEL_OUTPUT_MODE | BMP3_SEL_LEVEL | BMP3_SEL_LATCH;
ret = bmp3_set_sensor_settings(settings_sel, &settings, &DevOut);
bmp3_check_rslt("bmp3_set_sensor_settings", ret);
// ATOM
ret = BMP390_ATOM_InterfaceInit(&DevAtom, BMP3_SPI_INTF);
bmp3_check_rslt("BMP390_ATOM_InterfaceInit", ret);
ret = bmp3_init(&DevAtom);
bmp3_check_rslt("bmp3_init", ret);
settings.int_settings.drdy_en = BMP3_ENABLE;
settings.int_settings.latch = BMP3_INT_PIN_LATCH;
settings.int_settings.level = BMP3_INT_PIN_ACTIVE_HIGH;
settings.int_settings.output_mode = BMP3_INT_PIN_PUSH_PULL;
settings.press_en = BMP3_ENABLE;
settings.temp_en = BMP3_ENABLE;
settings.odr_filter.press_os = BMP3_OVERSAMPLING_2X;
settings.odr_filter.temp_os = BMP3_OVERSAMPLING_2X;
2025-03-21 11:44:42 +08:00
settings.odr_filter.odr = BMP3_ODR_0_39_HZ;
settings.odr_filter.iir_filter = BMP3_IIR_FILTER_COEFF_1;
settings_sel = BMP3_SEL_PRESS_EN | BMP3_SEL_TEMP_EN | BMP3_SEL_PRESS_OS | BMP3_SEL_TEMP_OS | BMP3_SEL_ODR | BMP3_SEL_DRDY_EN | BMP3_SEL_IIR_FILTER | BMP3_SEL_OUTPUT_MODE | BMP3_SEL_LEVEL | BMP3_SEL_LATCH;
ret = bmp3_set_sensor_settings(settings_sel, &settings, &DevAtom);
bmp3_check_rslt("bmp3_set_sensor_settings", ret);
press_task_id = TMOS_ProcessEventRegister(BMP390_ProcessEvent);
tmos_set_event(press_task_id, BMP390_IN_START);
//tmos_set_event(press_task_id, BMP390_OUT_START);
//tmos_set_event(press_task_id, BMP390_ATOM_START);
}
uint16_t Check_ProcessEvent(uint8_t task_id, uint16_t events)
{
if (events & CHECK_EVT_START)
{
// logDebug("fault_state = %d \r\n",fault_state);
if(!fault_state)
{
//<2F><>ѹ<EFBFBD><D1B9><EFBFBD><EFBFBD>
if(P[0] - P[2] >= 8000)
{
VALVE_CLOSE();
fault_state = 1;
tmos_start_task(check_task_id, MOTOR_STOP_EVT, MS1_TO_SYSTEM_TIME(CHARGE_TIME_MS));
logDebug("Over pressure state !");
}
//Ƿѹ<C7B7><D1B9><EFBFBD><EFBFBD>
if((P[0] - P[2] > 100) && (P[0] - P[2] <= 800))
{
VALVE_CLOSE();
fault_state = 2;
tmos_start_task(check_task_id, MOTOR_STOP_EVT, MS1_TO_SYSTEM_TIME(CHARGE_TIME_MS));
logDebug("Under voltage status !");
}
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if( P[0] - P[1] >= 700)
{
VALVE_CLOSE();
fault_state = 3;
tmos_start_task(check_task_id, MOTOR_STOP_EVT, MS1_TO_SYSTEM_TIME(CHARGE_TIME_MS));
logDebug("Over current status !");
}
}
// logDebug("motor_flag_end = %d",motor_flag);
//<2F>ֶ<EFBFBD><D6B6>ط<EFBFBD>
if(motor_flag == 1)
{
motor_flag = 0;
gValveData.switch_status = kOpened;
2025-05-13 18:04:46 +08:00
LED_VALVE_OPEN;
VALVE_OPEN();
// DelayMs(1000);
IotFlag_t.Valve_Open_flag = 1;
fault_state = 0;
logDebug("motor/LED open!!!");
tmos_start_task(check_task_id, MOTOR_STOP_EVT, MS1_TO_SYSTEM_TIME(CHARGE_TIME_MS));
}
else if(motor_flag == 2)
{
motor_flag = 0;
LED_VALVE_CLOSE;
2025-05-13 18:04:46 +08:00
VALVE_CLOSE();
// DelayMs(1000);
fault_state = 4;
logDebug("motor/LED close!!!");
tmos_start_task(check_task_id, MOTOR_STOP_EVT, MS1_TO_SYSTEM_TIME(CHARGE_TIME_MS));
}
tmos_start_task(check_task_id, CHECK_EVT_START, MS1_TO_SYSTEM_TIME(200)); //100
return (events ^ CHECK_EVT_START);
}
if (events & MOTOR_STOP_EVT)
{
VALVE_STOP();
logDebug("motor STOP");
DelayMs(1500);
if(fault_state == 4)
{
IotFlag_t.Valve_Close_flag = 1;
Iot_Send_Data();
}
return (events ^ MOTOR_STOP_EVT);
}
return 0;
}
void Function_Check(void)
{
check_task_id = TMOS_ProcessEventRegister(Check_ProcessEvent);
tmos_set_event(check_task_id, CHECK_EVT_START);
}
__INTERRUPT
__HIGH_CODE
void GPIOA_IRQHandler(void)
{
2025-05-13 17:29:54 +08:00
// <20><><EFBFBD><EFBFBD><EFBFBD>жϱ<D0B6>־λ
GPIOA_ClearITFlagBit(KEY_A_PIN);
// <20><><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD>Ϊ<EFBFBD><CEAA>ʵ<EFBFBD><CAB5><EFBFBD><EFBFBD><EFBFBD>¼<EFBFBD><C2BC><EFBFBD>ͨ<EFBFBD><CDA8>ȷ<EFBFBD>ϵ<EFBFBD>ƽ<EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD>Ľӽ<C4BD>0V<30><56>
if (GPIOA_ReadPortPin(KEY_A_PIN) == 0) {
// <20>ٴ<EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD>͵<EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD>ӽ<EFBFBD>0V<30><56>
DelayUs(10); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ50
2025-05-13 17:29:54 +08:00
if (GPIOA_ReadPortPin(KEY_A_PIN) == 0) {
// ȷ<><C8B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5><EFBFBD><EFBFBD><EFBFBD>¼<EFBFBD>
// <20><>ֹ˯<D6B9><CBAF>
BSP_BlockSleep();
// <20>ذ<EFBFBD><D8B0><EFBFBD><EFBFBD>ж<EFBFBD>
BSP_KEY_ExitLowpower();
printf("KEY IRQHandler !!!");
2025-05-13 17:29:54 +08:00
key_wakeup_flag = 1;
}
}
2025-05-13 17:29:54 +08:00
if (R16_PA_INT_IF & GPIO_Pin_9)
{
2025-05-13 17:29:54 +08:00
R16_PA_INT_IF = GPIO_Pin_9;
flag = 1;
tmos_set_event(press_task_id, BMP390_EVT_READ);
// logDebug("INT2 \r\n");
}
2025-05-13 17:29:54 +08:00
else if (R16_PA_INT_IF & GPIO_Pin_3)
{
2025-05-13 17:29:54 +08:00
R16_PA_INT_IF = GPIO_Pin_3;
flag = 2;
tmos_set_event(press_task_id, BMP390_EVT_READ);
// logDebug("INT3 \r\n");
}
2025-05-13 17:29:54 +08:00
else if (R16_PA_INT_IF & GPIO_Pin_6)
{
2025-05-13 17:29:54 +08:00
R16_PA_INT_IF = GPIO_Pin_6;
flag = 3;
tmos_set_event(press_task_id, BMP390_EVT_READ);
// logDebug("INT1 \r\n");
}
}