#include "bsp_wf5803.h" #include "CONFIG.h" typedef enum { kPressIn = 0, kPressOut = 1, kPressAtom = 2, kPressMaxIndex } TePressSensorIndex; static tmosTaskID press_task_id = INVALID_TASK_ID; #define PRESS_IN_CS_HIGH() GPIOB_SetBits(GPIO_Pin_9) #define PRESS_IN_CS_LOW() GPIOB_ResetBits(GPIO_Pin_9) #define PRESS_OUT_CS_HIGH() GPIOB_SetBits(GPIO_Pin_4) #define PRESS_OUT_CS_LOW() GPIOB_ResetBits(GPIO_Pin_4) #define PRESS_ATOM_CS_HIGH() GPIOB_SetBits(GPIO_Pin_17) #define PRESS_ATOM_CS_LOW() GPIOB_ResetBits(GPIO_Pin_17) uint8_t volatile press_done_flag = 0; uint8_t press_raw_data[kPressMaxIndex][5]; // 1 pa uint32_t press_value[kPressMaxIndex]; // 0.1 C int16_t temp_value[kPressMaxIndex]; void PRESS_SPI_CsStart(TePressSensorIndex index) { switch (index) { case kPressIn: PRESS_IN_CS_LOW(); break; case kPressOut: PRESS_OUT_CS_LOW(); break; case kPressAtom: PRESS_ATOM_CS_LOW(); break; default: break; } } void PRESS_SPI_CsStop(TePressSensorIndex index) { switch (index) { case kPressIn: PRESS_IN_CS_HIGH(); break; case kPressOut: PRESS_OUT_CS_HIGH(); break; case kPressAtom: PRESS_ATOM_CS_HIGH(); break; default: break; } } uint8_t PRESS_SPI_SendByte(uint8_t data) { R8_SPI0_BUFFER = data; while (!(R8_SPI0_INT_FLAG & RB_SPI_FREE)); return (R8_SPI0_BUFFER); } void WF5803_WriteReg(uint8_t Address, uint8_t value, TePressSensorIndex index) { PRESS_SPI_CsStart(index); PRESS_SPI_SendByte(0x00); PRESS_SPI_SendByte(Address); PRESS_SPI_SendByte(value); PRESS_SPI_CsStop(index); } uint8_t WF5803_ReadReg(uint8_t addr, TePressSensorIndex index) { uint8_t value; PRESS_SPI_CsStart(index); PRESS_SPI_SendByte(0x80); PRESS_SPI_SendByte(addr); value = PRESS_SPI_SendByte(0xFF); PRESS_SPI_CsStop(index); return value; } void PRESS_IO_SPI_Init(void) { /** * CSB: PB17 * SCL: PA13 * SDA: PA14 * SDO: PA15 */ // SDA: MOSI // SDO: MISO // CSB1: PA3 // GPIOA_SetBits(GPIO_Pin_3); // GPIOA_ModeCfg(GPIO_Pin_3, GPIO_ModeOut_PP_5mA); // CSB2: PB9 GPIOB_SetBits(GPIO_Pin_9); GPIOB_ModeCfg(GPIO_Pin_9, GPIO_ModeOut_PP_5mA); // CSB3: PB4 GPIOB_SetBits(GPIO_Pin_4); GPIOB_ModeCfg(GPIO_Pin_4, GPIO_ModeOut_PP_5mA); // CSB4: PB17 GPIOB_SetBits(GPIO_Pin_17); GPIOB_ModeCfg(GPIO_Pin_17, GPIO_ModeOut_PP_5mA); PRESS_SPI_CsStop(kPressIn); PRESS_SPI_CsStop(kPressOut); PRESS_SPI_CsStop(kPressAtom); // spi初始化,模式0 GPIOA_ModeCfg(GPIO_Pin_13 | GPIO_Pin_14, GPIO_ModeOut_PP_5mA); GPIOA_ModeCfg(GPIO_Pin_15, GPIO_ModeIN_PU); SPI0_MasterDefInit(); } void WF5803_Init(void) { PRESS_IO_SPI_Init(); WF5803_WriteReg(0x00, 0x81, kPressIn); // 配置spi为四线模式 WF5803_WriteReg(0x00, 0x81, kPressOut); // 配置spi为四线模式 WF5803_WriteReg(0x00, 0x81, kPressAtom); // 配置spi为四线模式 } void PRESS_LowerIO_Init(void) { // WF5803默认供电时,其他IO都是高电平 // SPI GPIOA_SetBits(GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15); GPIOA_ModeCfg(GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15, GPIO_ModeIN_PU); // CSB1: PA3 // GPIOA_SetBits(GPIO_Pin_3); // GPIOA_ModeCfg(GPIO_Pin_3, GPIO_ModeIN_PU); // CSB1: PA3 // GPIOA_SetBits(GPIO_Pin_3); // GPIOA_ModeCfg(GPIO_Pin_3, GPIO_ModeOut_PP_5mA); // CSB2: PB9 GPIOB_SetBits(GPIO_Pin_9); GPIOB_ModeCfg(GPIO_Pin_9, GPIO_ModeIN_PU); // CSB3: PB4 GPIOB_SetBits(GPIO_Pin_4); GPIOB_ModeCfg(GPIO_Pin_4, GPIO_ModeIN_PU); // CSB4: PB17 GPIOB_SetBits(GPIO_Pin_17); GPIOB_ModeCfg(GPIO_Pin_17, GPIO_ModeIN_PU); } void Lower_IO_Deinit(void) { // LED GPIOA_ResetBits(GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12); GPIOA_ModeCfg(GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12, GPIO_ModeIN_PD); // KEY GPIOA_ResetBits(GPIO_Pin_7); GPIOA_ModeCfg(GPIO_Pin_7, GPIO_ModeIN_PU); // RESET KEY GPIOB_ResetBits(GPIO_Pin_7); GPIOB_ModeCfg(GPIO_Pin_7, GPIO_ModeIN_PU); // motor GPIOB_ResetBits(GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2); GPIOB_ModeCfg(GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2, GPIO_ModeIN_PD); // COIL_ADC GPIOA_ResetBits(GPIO_Pin_6); GPIOA_ModeCfg(GPIO_Pin_6, GPIO_ModeIN_PD); // ADC_CTRL,ADC_VBAT GPIOA_ResetBits(GPIO_Pin_0 | GPIO_Pin_1); GPIOA_ModeCfg(GPIO_Pin_0 | GPIO_Pin_1, GPIO_ModeIN_PD); } void PRESS_LowPower(void) { Lower_IO_Deinit(); if (press_done_flag == 1) { PRESS_LowerIO_Init(); } } uint8_t GetSensorData(TePressSensorIndex index) { memset(press_raw_data[index], 0, 5); if (WF5803_ReadReg(0x02, index) != 0x01) { PRINT("Status = %02x\r\n", WF5803_ReadReg(0x02, index)); return 1; } // 气压数据 // 温度数据 for (uint8_t i = 0; i < 5; i++) { press_raw_data[index][i] = WF5803_ReadReg(0x06 + i, index); } return 0; } __HIGH_CODE __attribute__((noinline)) void SensorData_Process(TePressSensorIndex index) { long reading = 0; float fDat = 0; float press = 0; float temp = 0; GetSensorData(index); reading = press_raw_data[index][0]; reading = reading << 8; reading |= press_raw_data[index][1]; reading = reading << 8; reading |= press_raw_data[index][2]; if (reading >= 8388608) { fDat = (int32_t)(reading - 16777216) / 8388608.0f; } else { fDat = reading / 8388608.0f; } press = fDat * 125 + 17.5; // WF5803_1BAR 如果是使用10m级别的深传就使用这个 press_value[index] = (uint32_t)(press * 1000); // pa reading = press_raw_data[index][3]; reading = reading << 8; reading |= press_raw_data[index][4]; if (reading > 32768) { temp = (reading - 65844) / 256.0f; temp_value[index] = (int16_t)(temp * 10); // .1 C } else { temp = (reading - 308) / 256.0f; temp_value[index] = (int16_t)(temp * 10); // .1 C } // PRINT("P[%d] = %d.%d pa\r\n", index, (int)(press * 1000), ((int)(press * 10000000.0f) % 10000)); // PRINT("T[%d] = %d.%d \r\n", index, (int)temp, ((int)(temp * 100.0f) % 100)); } __HIGH_CODE __attribute__((noinline)) uint16_t WF5803_ProcessEvent(uint8_t task_id, uint16_t events) { if (events & WF5803_EVT_START) { press_done_flag = 0; WF5803_Init(); WF5803_WriteReg(0x30, 0x0A, kPressIn); WF5803_WriteReg(0x30, 0x0A, kPressOut); WF5803_WriteReg(0x30, 0x0A, kPressAtom); tmos_start_task(press_task_id, WF5803_EVT_READ, MS1_TO_SYSTEM_TIME(5)); return (events ^ WF5803_EVT_START); } else if (events & WF5803_EVT_READ) { SensorData_Process(kPressIn); SensorData_Process(kPressOut); SensorData_Process(kPressAtom); press_value[kPressIn]; press_value[kPressOut]; press_value[kPressAtom]; PRINT("%d %d %d pa\r\n", press_value[kPressIn], press_value[kPressOut], press_value[kPressAtom]); PRINT("%d %d %d C\r\n", temp_value[kPressIn], temp_value[kPressOut], temp_value[kPressAtom]); if (press_value[kPressIn] > press_value[kPressOut]) { PRINT("> %d\r\n", press_value[kPressIn] - press_value[kPressOut]); } else { PRINT("< %d\r\n", press_value[kPressOut] - press_value[kPressIn]); } tmos_start_task(press_task_id, WF5803_EVT_START, MS1_TO_SYSTEM_TIME(800)); press_done_flag = 1; return (events ^ WF5803_EVT_READ); } return 0; } void BSP_PRESS_Init(void) { press_task_id = TMOS_ProcessEventRegister(WF5803_ProcessEvent); tmos_set_event(press_task_id, WF5803_EVT_START); }